【算法设计与分析基础】18、霍纳法则

产生随机数

package cn.xf.algorithm.ch02;

import java.util.ArrayList;
import java.util.List;

/**
 * 生产随机数
 * @author xiaof
 *
 */
public class Random {

	/**
	 * 生产一个随机数的数列
	 * @param n  生成n个数列
	 * @param m  数据在0和m-1之间
	 * @param seed  随机初始种子
	 * @param a		参数
	 * @param b		参数
	 * @return
	 */
	public static List<Integer> randomNum(int n, int m, int seed, int a, int b)
	{
		List<Integer> numbers = new ArrayList<Integer>();
		int initData = (a * seed + b) % m;
		numbers.add(Math.abs(initData));	//初始化一个数据

		for(int i = 1; i < n; ++i)
		{
			int newData = (a * numbers.get(i - 1) + b) % m;
			numbers.add(Math.abs(newData));
		}

		return numbers;
	}

	/**
	 * 生产一个随机数的数列
	 * @param n 生成n个数列
	 * @param m  数据在0和m-1之间
     * @param seed  随机初始种子
     * @param a     参数
     * @param b     参数
     * @return
	 */
	public static List<Double> randomNumDouble(int n, int m, int seed, int a, int b) {
	    //创建结果数组
	    List<Double> numbers = new ArrayList<Double>();
	    int initData = (a * seed + b) % m; //取出一个初始值,在0到m之间
	    numbers.add((double) Math.abs(initData));   //加入第一个值
	    //后续数值以前一个数据作为基础种子进行变换
	    for(int i = 1; i < n; ++i) {
	        double newData = (a * numbers.get(i - 1) + b) % m;
	        numbers.add(Math.abs(newData));
	    }

	    return numbers;
	}

	public static void main(String[] args) {
//		List<Integer> res = Random.randomNum(10, 10, 998, 58797676, 1);
		List<Double> res = Random.randomNumDouble(10, 10, 998, 58797676, 1);
		for(Double a : res)
		{
			System.out.print(a + "\t");
		}
 	}
}

  

随机的取值系数

求值

package cn.xf.algorithm.ch06ChangeRule;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.junit.Test;

import cn.xf.algorithm.ch02.Random;

/**
 *
 * 功能:霍纳法则
 * @author xiaofeng
 * @date 2017年7月13日
 * @fileName HornerRule.java
 *
 */
public class HornerRule {
	/**
	 * 用霍纳法则求一个多项式在一个给定点的值
	 * 输入:一个n次多项式的系数数组P【0...n】(从低到高存储),以及一个数字x
	 * 输出:多项式在x点的值
	 * @param p
	 * @param x
	 */
	public Double horner(List<Double> p, int x) {
		if(p == null || p.size() <=0) {
			return 0d;
		}
		//求结果集
		Double result = p.get(p.size() - 1);
		for(int i = p.size() - 2; i >= 0; --i) {
			//累计往后添加系数数据
			//一次从大到小吧X的系数乘以X,  然后加上下一个次数等级的系数,然后求和,作为新的下一个次数的系数乘数
			result = result * x + p.get(i);
		}

		return result;
	}

	/**
	 * 普通计算方式
	 * @param p
	 * @param x
	 * @return
	 */
	public Double notHorner(List<Double> p, int x) {
	    if(p == null || p.size() <=0) {
            return 0d;
        }

	    //p是系数存储列表
	    Double result = 0d;  //0次幂的
	    for(int i = 0; i < p.size(); ++i) {
	        result += p.get(i) * doublePow(x, i);
	    }

	    return result;
	}

	//求x的n次幂
	public static Double doublePow(double x, int n) {
	    if(x == 0)
	        return 0d;

	    if(n == 0)
	        return 1d;
	    Double result = 1d;
	    for(int i = 0; i < n; ++i) {
	        result *= x;
	    }

	    return result;
	}

	@Test
	public void test1() {
	    //定义的一个数组是方程式的系数,第二个参数是未知数的值
	    //方程:y=5x^5 + 3x^4 + 2x^2 + 3
	    //当x为4的时候
	    HornerRule hr = new HornerRule();
	    List<Double> xishus = new ArrayList<Double>();
	    //这个数组的顺序要按照,0次幂到N次幂的顺序来
	    xishus.addAll(Arrays.asList(3d, 0d, 2d, 0d, 3d, 5d));
	    System.out.println(hr.horner(xishus, 4));
	    //一般方式计算
	    System.out.println(hr.notHorner(xishus, 4));
	    System.out.printf("JOB START OUTPUT: %tF %<tT%n", System.currentTimeMillis());
	}

	@Test
    public void compare() {
        // 当x为4的时候
        HornerRule hr = new HornerRule();
        // 建造100个随机数
        List<Double> xishus = Random.randomNumDouble(600, 3, 998, 58797676, 1);
        //求值
        System.out.printf("JOB HORNER START OUTPUT: %tF %<tT%n", System.currentTimeMillis());
        System.out.println(hr.notHorner(xishus, 3));
        System.out.printf("JOB HORNER END OUTPUT: %tF %<tT%n", System.currentTimeMillis());
        System.out.println("######################################################################################");
        System.out.printf("JOB NOTHORNER START OUTPUT: %tF %<tT%n", System.currentTimeMillis());
        System.out.println(hr.notHorner(xishus, 3));
        System.out.printf("JOB NOTHORNER END OUTPUT: %tF %<tT%n", System.currentTimeMillis());

    }
}

  

时间: 2024-08-03 08:26:13

【算法设计与分析基础】18、霍纳法则的相关文章

算法设计与分析基础(第3版)读书笔记(及几处翻译上的错误~~)

算法设计与分析基础(第3版) p16 in-place翻译为'在位'?'就地'更合适点 p38 amortized应翻译为'均摊','摊销'这个词简直莫名其妙(可能因为翻译是做算法交易导致的?) p64 迭代优于递归(迭代始终是增量式的,而递归就没办法增量了,除非能够dump整个运行时栈) p73 通过算法可视化得到一个更好的非递归算法(人的图像认知直觉思维?) p79 验证一个拓扑是环.星.还是团?(这个地方有点意思,因为我想到了动态的Verify) p87 凸包问题:从数据结构上讲,Set<

【算法设计与分析基础】大整数乘法

#include<iostream> #include<string> #include<time.h> #include<stdlib.h> #include<sstream> using namespace std; class BigDecimal{ private: int max(int a,int b){//获取两数中的最大值 return a^((a^b) & -(a<b)); } public: string n;

【算法设计与分析基础】关灯游戏

① R.java  用于存储一些全局变量 package lightoff; public class R { /* public static int lightCondition[][] = { {1,0,0,1,1}, {1,0,0,1,1}, {1,0,0,1,1}, {1,0,0,1,1}, }; */ public static int lightCondition[][] = { {1,1,1,1}, {1,1,1,1}, {1,1,1,1}, {1,1,1,1}, }; //灯面

【算法设计与分析基础】19、字符串匹配算法

package cn.xf.algorithm.ch07inputEnhancement; import java.util.HashMap; import java.util.List; import java.util.Map; import org.junit.Test; /** * * 功能:字符串匹配算法,(还有一种叫KMP算法的,也是很经典的算法,就是比较复杂) * * 第一步:对于给定的长度为m的模式和在模式文本中用到的字母表,按照上面的描述构造移动表 * 第二步:将模式与文本的开

【算法设计与分析基础】16、高斯消元法

package cn.xf.algorithm.ch06ChangeRule; import java.util.ArrayList; import java.util.List; import org.junit.Test; import cn.xf.util.GenericPair; /** * * 功能:高斯消元法,也就是多元数据矩阵,依次吧每列的其他行数据消去为0,然后求出一个元的解,然后就可以根据这个数据来递推出其他元的解 * @author xiaofeng * @date 2017

【算法设计与分析基础】20、动态规划-硬币搜集问题

题目: 在n*m格木板中放有一些硬币,每格的硬币数目最多为一个.在木板左上方的一个机器人需要搜集尽可能多的硬币并把他们带到右下方的单元格,每一步,机器人可以从当前的位置向右移动一格 或者向下移动一格,当机器人遇到一个有硬币的单元格的时,就会将这枚硬币搜集起来 解题: 硬币收集的时候,我们 从结果状态开始看,当搜集当前硬币的时候,只有两种方式,从上往下搜集,或者从左向右搜集 也就是当前f[i,j] = max{f[i, j - 1], f[i - 1, j]},初始化第一行和第一列,从第二行和列开

【算法设计与分析基础】17、堆

以数组来存放堆数据 package cn.xf.algorithm.ch06ChangeRule; import java.util.ArrayList; import java.util.List; import org.junit.Test; /** * * 功能:堆的构造 * 1.堆可以定义为一颗二叉树,树的节点包含键,并且满足一下条件 * 1) 树的形状要求:这棵二叉树是基本完备的(完全二叉树),树的每一层都是满的,除了最后一层最右边的元素可能缺位 * 2) 父母优势,堆特性,每一个节点

【算法设计与分析基础】15、最近对问题

1.由于Java中没有存放单个键值对的类型使用起来不是很方便 package cn.xf.util; /** * * 功能:相当于一个key value * @author xiaofeng * @date 2017年6月18日 * @fileName GenericPair.java * */ public class GenericPair<E extends Object, F extends Object> { private E first; private F second; pu

【算法设计与分析基础】23、堆排序-2

package cn.xf.algorithm.ch09Greedy.util; import java.util.ArrayList; import java.util.List; /** * 堆构造以及排序 * * .功能:堆的构造 * 1.堆可以定义为一颗二叉树,树的节点包含键,并且满足一下条件 * 1) 树的形状要求:这棵二叉树是基本完备的(完全二叉树),树的每一层都是满的,除了最后一层最右边的元素可能缺位 * 2) 父母优势,堆特性,每一个节点的键都要大于或者等于他子女的键(对于任何叶