Java集合源码分析(二)ArrayList

ArrayList简介

  ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存。

  ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类。

  ArrayList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问,实现了Cloneable接口,能被克隆。

ArrayList源码

  ArrayList的源码如下(加入了简单的注释,版本号为1.56):

 /**@(#)ArrayList.java 1.56 06/04/21
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util;

/**
 * @author  Josh Bloch
 * @author  Neal Gafter
 * @version 1.56, 04/21/06
 * @see	    Collection
 * @see	    List
 * @see	    LinkedList
 * @see	    Vector
 * @since   1.2
 */

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    // ArrayList基于该数组实现,用该数组保存数据
    private transient Object[] elementData;

    // 实际大小
    private int size;

    // 带容量大小的构造函数
    public ArrayList(int initialCapacity) {
	super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
	this.elementData = new Object[initialCapacity];
    }

    // 默认构造函数
    public ArrayList() {
	this(10);
    }

    // Collection构造函数
    public ArrayList(Collection<? extends E> c) {
	elementData = c.toArray();
	size = elementData.length;
	// c.toArray might (incorrectly) not return Object[] (see 6260652)
	if (elementData.getClass() != Object[].class)
	    elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

    // 当前容量值为实际个数
    public void trimToSize() {
	modCount++;
	int oldCapacity = elementData.length;
	if (size < oldCapacity) {
            elementData = Arrays.copyOf(elementData, size);
	}
    }
   // 确定ArrayList容量
    // 若容量不足以容纳当前全部元素,则扩容,新的容量=“(原始容量x3)/2 + 1”
    public void ensureCapacity(int minCapacity) {
	modCount++;
	int oldCapacity = elementData.length;
	if (minCapacity > oldCapacity) {
	    Object oldData[] = elementData;
	    int newCapacity = (oldCapacity * 3)/2 + 1;
    	    if (newCapacity < minCapacity)
		newCapacity = minCapacity;
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
	}
    }

    // 返回实际大小
    public int size() {
	return size;
    }

    // 清空
    public boolean isEmpty() {
	return size == 0;
    }

    // 是否包含o
    public boolean contains(Object o) {
	return indexOf(o) >= 0;
    }

    // 正向查找,返回o的index
    public int indexOf(Object o) {
	if (o == null) {
	    for (int i = 0; i < size; i++)
		if (elementData[i]==null)
		    return i;
	} else {
	    for (int i = 0; i < size; i++)
		if (o.equals(elementData[i]))
		    return i;
	}
	return -1;
    }

    // 逆向查找,返回o的index
    public int lastIndexOf(Object o) {
	if (o == null) {
	    for (int i = size-1; i >= 0; i--)
		if (elementData[i]==null)
		    return i;
	} else {
	    for (int i = size-1; i >= 0; i--)
		if (o.equals(elementData[i]))
		    return i;
	}
	return -1;
    }

    // 克隆函数
    public Object clone() {
	try {
	    ArrayList<E> v = (ArrayList<E>) super.clone();
	    v.elementData = Arrays.copyOf(elementData, size);
	    v.modCount = 0;
	    return v;
	} catch (CloneNotSupportedException e) {
	    // this shouldn‘t happen, since we are Cloneable
	    throw new InternalError();
	}
    }

    // 返回ArrayList的Object数组
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    // 返回ArrayList组成的数组
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a‘s runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
	System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    // 得到index位置的元素
    public E get(int index) {
	RangeCheck(index);

	return (E) elementData[index];
    }

    // 向index插入element
    public E set(int index, E element) {
	RangeCheck(index);

	E oldValue = (E) elementData[index];
	elementData[index] = element;
	return oldValue;
    }

    // 添加e
    public boolean add(E e) {
	ensureCapacity(size + 1);  // Increments modCount!!
	elementData[size++] = e;
	return true;
    }

    // 向index插入element
    public void add(int index, E element) {
	if (index > size || index < 0)
	    throw new IndexOutOfBoundsException(
		"Index: "+index+", Size: "+size);

	ensureCapacity(size+1);  // Increments modCount!!
	System.arraycopy(elementData, index, elementData, index + 1,
			 size - index);
	elementData[index] = element;
	size++;
    }

    // 移除index位置的元素
    public E remove(int index) {
	RangeCheck(index);

	modCount++;
	E oldValue = (E) elementData[index];

	int numMoved = size - index - 1;
	if (numMoved > 0)
	    System.arraycopy(elementData, index+1, elementData, index,
			     numMoved);
	elementData[--size] = null; // Let gc do its work

	return oldValue;
    }

    // 移除o
    public boolean remove(Object o) {
	if (o == null) {
            for (int index = 0; index < size; index++)
		if (elementData[index] == null) {
		    fastRemove(index);
		    return true;
		}
	} else {
	    for (int index = 0; index < size; index++)
		if (o.equals(elementData[index])) {
		    fastRemove(index);
		    return true;
		}
        }
	return false;
    }

    // 快速移除index位置的元素
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // Let gc do its work
    }

    // 清空
    public void clear() {
	modCount++;

	// Let gc do its work
	for (int i = 0; i < size; i++)
	    elementData[i] = null;

	size = 0;
    }

    // 添加Collection
    public boolean addAll(Collection<? extends E> c) {
	Object[] a = c.toArray();
        int numNew = a.length;
	ensureCapacity(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
	return numNew != 0;
    }

    // 在index添加Collection
    public boolean addAll(int index, Collection<? extends E> c) {
	if (index > size || index < 0)
	    throw new IndexOutOfBoundsException(
		"Index: " + index + ", Size: " + size);

	Object[] a = c.toArray();
	int numNew = a.length;
	ensureCapacity(size + numNew);  // Increments modCount

	int numMoved = size - index;
	if (numMoved > 0)
	    System.arraycopy(elementData, index, elementData, index + numNew,
			     numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
	size += numNew;
	return numNew != 0;
    }

    // 移除fromIndex到toIndex之间的全部元素
    protected void removeRange(int fromIndex, int toIndex) {
	modCount++;
	int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

	// Let gc do its work
	int newSize = size - (toIndex-fromIndex);
	while (size != newSize)
	    elementData[--size] = null;
    }

    // 移除index位置的元素
    private void RangeCheck(int index) {
	if (index >= size)
	    throw new IndexOutOfBoundsException(
		"Index: "+index+", Size: "+size);
    }

    // java.io.Serializable的写入函数,将ArrayList的“容量,所有的元素值”都写入到输出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
	// Write out element count, and any hidden stuff
	int expectedModCount = modCount;
	s.defaultWriteObject();

        // Write out array length
        s.writeInt(elementData.length);

	// Write out all elements in the proper order.
	for (int i=0; i<size; i++)
            s.writeObject(elementData[i]);

	if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

    }

    // java.io.Serializable的读取函数:根据写入方式读出,先将ArrayList的“容量”读出,然后将“所有的元素值”读出
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
	// Read in size, and any hidden stuff
	s.defaultReadObject();

        // Read in array length and allocate array
        int arrayLength = s.readInt();
        Object[] a = elementData = new Object[arrayLength];

	// Read in all elements in the proper order.
	for (int i=0; i<size; i++)
            a[i] = s.readObject();
    }
}

ArrayList详细分析

1.构造函数

ArrayList有三个构造函数,如下(英文注释全部删掉,默认代码折叠,太占地方了):

    private transient Object[] elementData;

    private int size;

    public ArrayList(int initialCapacity) {
	super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
	this.elementData = new Object[initialCapacity];
    }

    public ArrayList() {
	this(10);
    }

    public ArrayList(Collection<? extends E> c) {
	elementData = c.toArray();
	size = elementData.length;
	// c.toArray might (incorrectly) not return Object[] (see 6260652)
	if (elementData.getClass() != Object[].class)
	    elementData = Arrays.copyOf(elementData, size, Object[].class);
    }

  从第一句话可以看到,ArrayList本质上是一个Object类型的数组,前面加入了transient关键字,在序列化的时候忽略,但是在最后自己重写了writeObject和readObject这两个函数,第一个是构造传入固定大小的ArrayList,第二个是默认大小为10,第三个是将传入的Collection转成ArrayList。

  序列化有2种方式:

  A、只是实现了Serializable接口。

    序列化时,调用java.io.ObjectOutputStream的defaultWriteObject方法,将对象序列化。

    注意:此时transient修饰的字段,不会被序列化。

  B、实现了Serializable接口,同时提供了writeObject方法。

    序列化时,会调用该类的writeObject方法。而不是java.io.ObjectOutputStream的defaultWriteObject方法。

    注意:此时transient修饰的字段,是否会被序列化,取决于writeObject

2.自动扩容函数

    public void ensureCapacity(int minCapacity) {
	modCount++;
	int oldCapacity = elementData.length;
	if (minCapacity > oldCapacity) {
	    Object oldData[] = elementData;
	    int newCapacity = (oldCapacity * 3)/2 + 1;
    	    if (newCapacity < minCapacity)
		newCapacity = minCapacity;
            // minCapacity is usually close to size, so this is a win:
            elementData = Arrays.copyOf(elementData, newCapacity);
	}
    }

  关键在这里int newCapacity = (oldCapacity * 3)/2 + 1;新的数组大小是旧的数组大小的二分之三加一,然后调用Arrays.copyOf(elementData, newCapacity);得到新的elementData对象。说到这里我默默的翻看了一下jdk1.7的源码,发现在jdk1.7当中,扩容效率有了本质上的提高,请看下面的代码:(出自jdk1.7)

    public void ensureCapacity(int minCapacity) {
        if (minCapacity > 0)
            ensureCapacityInternal(minCapacity);
    }

    private void ensureCapacityInternal(int minCapacity) {
        modCount++;
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

  1.7相比较1.6,自动扩容增加了两个方法,增加了数组扩容时的判断,最重要的是这句话:int newCapacity = oldCapacity + (oldCapacity >> 1);没有再用*3再/2这种低端的玩法,直接采用了移位运算,我不是太懂十进制数的移位运算,经过几次自己的测试发现如果是偶数,这个移位运算正好是一半,如果是奇数,则是向下取整。

3.存储

  第一判断ensureSize,如果够直接插入,否则按照policy扩展,复制,重建数组。

  第二步插入元素。

  ArrayList提供了set(int index, E element)、add(E e)、add(int index, E element)、addAll(Collection<? extends E> c)、addAll(int index, Collection<? extends E> c)这些添加元素的方法。

  3.1. set(int index, E element),取代,而非插入,返回被取代的元素

    public E set(int index, E element) {
	RangeCheck(index);

	E oldValue = (E) elementData[index];
	elementData[index] = element;
	return oldValue;
    }

  3.2.add(E e) 增加元素到末尾,如果size不溢出,自动增长

    public boolean add(E e) {
	ensureCapacity(size + 1);  // Increments modCount!!
	elementData[size++] = e;
	return true;
    }

  3.3.add(int index, E element) 增加元素到某个位置,该索引之后的元素都后移一位

    public void add(int index, E element) {
	if (index > size || index < 0)
	    throw new IndexOutOfBoundsException(
		"Index: "+index+", Size: "+size);

	ensureCapacity(size+1);  // Increments modCount!!
	System.arraycopy(elementData, index, elementData, index + 1,
			 size - index);
	elementData[index] = element;
	size++;
    }

  3.4.后面两个方法都是把集合转换为数组利用c.toArray,然后利用Arrays.copyOF 方法

    public boolean addAll(Collection<? extends E> c) {
	Object[] a = c.toArray();
        int numNew = a.length;
	ensureCapacity(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
	return numNew != 0;
    }

    public boolean addAll(int index, Collection<? extends E> c) {
	if (index > size || index < 0)
	    throw new IndexOutOfBoundsException(
		"Index: " + index + ", Size: " + size);

	Object[] a = c.toArray();
	int numNew = a.length;
	ensureCapacity(size + numNew);  // Increments modCount

	int numMoved = size - index;
	if (numMoved > 0)
	    System.arraycopy(elementData, index, elementData, index + numNew,
			     numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
	size += numNew;
	return numNew != 0;
    }

4.删除

一种是按索引删除,不用查询,索引之后的element顺序左移一位,并将最后一个element设为null,由gc负责回收。

    public E remove(int index) {
	RangeCheck(index);

	modCount++;
	E oldValue = (E) elementData[index];

	int numMoved = size - index - 1;
	if (numMoved > 0)
	    System.arraycopy(elementData, index+1, elementData, index,
			     numMoved);
	elementData[--size] = null; // Let gc do its work

	return oldValue;
    }

5.Arrays.copyOf

  源码如下:

    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

  这里有所优化,如果是Object类型的,直接new Object数组,如果不是则通过Array.newInstance(newType.getComponentType(), newLength)方法产生相应的数组类型。通过System.arraycopy实现数组复制,System是个final类,arraycopy是个native方法。

  该方法被标记了native,调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。

6.Arrays.newInstance()的意义

  Java反射技术除了可以在运行时动态地决定要创建什么类型的对象,访问哪些成员变量,方法,还可以动态地创建各种不同类型,不同维度的数组。

  动态创建数组的步骤如下:
    1.创建Class对象,通过forName(String)方法指定数组元素的类型
    2.调用Array.newInstance(Class, length_of_array)动态创建数组

  访问动态数组元素的方法和通常有所不同,它的格式如下所示,注意该方法返回的是一个Object对象
  Array.get(arrayObject, index)

 

  为动态数组元素赋值的方法也和通常的不同,它的格式如下所示, 注意最后的一个参数必须是Object类型
  Array.set(arrayObject, index, object)

  动态数组Array不单可以创建一维数组,还可以创建多维数组。步骤如下:
    1.定义一个整形数组:例如int[] dims= new int{5, 10, 15};指定一个三维数组
    2.调用Array.newInstance(Class, dims);创建指定维数的数组

  访问多维动态数组的方法和访问一维数组的方式没有什么大的不同,只不过要分多次来获取,每次取出的都是一个Object,直至最后一次,赋值也一样。

  动态数组Array可以转化为普通的数组,例如:
  Array arry = Array.newInstance(Integer.TYPE,5);
  int arrayCast[] = (int[])array;

7.为何要序列化

  ArrayList 实现了java.io.Serializable接口,在需要序列化的情况下,复写writeObjcet和readObject方法提供适合自己的序列化方法。

  1、序列化是干什么的?

    简单说就是为了保存在内存中的各种对象的状态(也就是实例变量,不是方法),并且可以把保存的对象状态再读出来。虽然你可以用你自己的各种各样的方法来保存object states,但是Java给你提供一种应该比你自己好的保存对象状态的机制,那就是序列化。

  2、什么情况下需要序列化

    a)当你想把的内存中的对象状态保存到一个文件中或者数据库中时候;

    b)当你想用套接字在网络上传送对象的时候;

    c)当你想通过RMI传输对象的时候;

8.总结

  8.1.Arraylist基于数组实现,是自增长的

  8.2.非线程安全的

  8.3.插入时可能要扩容,删除时size不会减少,如果需要,可以使用trimToSize方法,在查询时,遍历查询,为null,判断是否是null, 返回; 如果不是null,用equals判断,返回

    /**
     * Returns <tt>true</tt> if this list contains the specified element.
     * More formally, returns <tt>true</tt> if and only if this list contains
     * at least one element <tt>e</tt> such that
     * <tt>(o==null ? e==null : o.equals(e))</tt>.
     *
     * @param o element whose presence in this list is to be tested
     * @return <tt>true</tt> if this list contains the specified element
     */
    public boolean contains(Object o) {
	return indexOf(o) >= 0;
    }

    /**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    public int indexOf(Object o) {
	if (o == null) {
	    for (int i = 0; i < size; i++)
		if (elementData[i]==null)
		    return i;
	} else {
	    for (int i = 0; i < size; i++)
		if (o.equals(elementData[i]))
		    return i;
	}
	return -1;
    }

  8.4. 允许重复和 null 元素

————————————————————————————————————————————————————————————

参考资料:

【Java集合源码剖析】ArrayList源码剖析

集合类学习之Arraylist 源码分析

时间: 2024-10-14 20:59:34

Java集合源码分析(二)ArrayList的相关文章

JAVA Collection 源码分析(二)之SubList

昨天我们分析了ArrayList的源码,我们可以看到,在其中还有一个类,名为SubList,其继承了AbstractList. // AbstractList类型的引用,所有继承了AbstractList都可以传进来 private final AbstractList<E> parent; // 这个是其实就是parent的偏移量,从parent中的第几个元素开始的 private final int parentOffset; private final int offset; int s

【Java集合源码剖析】ArrayList源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/35568011 ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的C

Java 集合源码分析(一)HashMap

目录 Java 集合源码分析(一)HashMap 1. 概要 2. JDK 7 的 HashMap 3. JDK 1.8 的 HashMap 4. Hashtable 5. JDK 1.7 的 ConcurrentHashMap 6. JDK 1.8 的 ConcurrentHashMap 7. 最后补充一下 HashMap 中的一些属性和方法 附:更这个系列感觉自己像是又挖了一个坑??,不过趁自己刚好工作不太忙,有空闲期,静下心来研究学习源码也是一件很值得做的事,自己尽量会把这个坑填完??.

Java集合源码分析(三)LinkedList

LinkedList简介 LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈.队列和双端队列来使用. LinkedList同样是非线程安全的,只在单线程下适合使用. LinkedList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了Cloneable接口,能被克隆. LinkedList源码 以下是linkedList源码(加入简单代码注释): /* * @(#)LinkedList.java 1.6

Java集合源码分析(四)Vector&lt;E&gt;

Vector<E>简介 Vector也是基于数组实现的,是一个动态数组,其容量能自动增长. Vector是JDK1.0引入了,它的很多实现方法都加入了同步语句,因此是线程安全的(其实也只是相对安全,有些时候还是要加入同步语句来保证线程的安全),可以用于多线程环境. Vector没有丝线Serializable接口,因此它不支持序列化,实现了Cloneable接口,能被克隆,实现了RandomAccess接口,支持快速随机访问. Vector<E>源码 如下(已加入详细注释): /*

Java集合源码分析(七)HashMap&lt;K, V&gt;

一.HashMap概述 HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同.)此类不保证映射的顺序,特别是它不保证该顺序恒久不变. 值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap. Map map = Coll

Java集合源码分析之LinkedList

1. LinkedList简介 public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable 可以看到LinkedList类继承AbstractSequentialList类,实现了List, Deque, Cloneable, java.io.Serializable接口.实

转:【Java集合源码剖析】ArrayList源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/35568011   本篇博文参加了CSDN博文大赛,如果您觉得这篇博文不错,希望您能帮我投一票,谢谢! 投票地址:http://vote.blog.csdn.net/Article/Details?articleid=35568011   ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayL

Java集合源码分析之LikedList

一.LinkedList结构 LinkedList是一种可以在任何位置进行高效地插入和移除操作的有序序列,它是基于双向链表实现的. LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. LinkedList 实现 List 接口,能对它进行队列操作. LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用. LinkedList 实现了Cloneable接口,即覆盖了函数clone