POJ 2528 线段树+离散化

题意是给你n张海报,告诉你每张海报的宽度和先后顺序,海报会重叠,问你露在外面的海报有多少张?这题主要是离散化理解了好久,关键在于建hash表时不能选择最普通的一一对应,为什么?看了网上一组数据后瞬间就明白了:1,10  1,4  6,10。

Mayor‘s posters

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 51347   Accepted: 14875

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters‘ size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 int n;
 8 int ncount=0;
 9 struct post
10 {
11     int l,r;
12 }posters[10100];
13 int x[20200];
14 int hash[10000010];
15 struct node
16 {
17     int l,r;
18     bool flag;
19     int mid()
20     {
21         return (l+r)/2;
22     }
23 }tree[1000000];
24 void buildtree(int root,int l,int r)
25 {
26     tree[root].l=l;
27     tree[root].r=r;
28     tree[root].flag=false;
29     if(l!=r)
30     {
31         buildtree(2*root+1,l,(l+r)/2);
32         buildtree(2*root+2,(l+r)/2+1,r);
33     }
34 }
35 bool judge(int root,int l,int r)
36 {
37     if(tree[root].flag) return false;
38     if(tree[root].l==l&&tree[root].r==r)
39     {
40         tree[root].flag=true;
41         return true;
42     }
43     bool result;
44     if(r<=tree[root].mid())
45         result=judge(root*2+1,l,r);
46     else if(l>tree[root].mid())
47         result=judge(root*2+2,l,r);
48     else
49     {
50         bool b1=judge(root*2+1,l,tree[root].mid());
51         bool b2=judge(root*2+2,tree[root].mid()+1,r);
52         result=b1||b2;
53     }
54     if(tree[root*2+1].flag&&tree[root*2+2].flag)
55         tree[root].flag=true;
56     return result;
57 }
58 int main()
59 {
60     int T,i,j,k,t;
61     cin>>T;
62     while(T--)
63     {
64         cin>>n;
65         ncount=0;
66         for(i=0;i<n;i++)
67         {
68             cin>>posters[i].l>>posters[i].r;
69             x[ncount++]=posters[i].l;
70             x[ncount++]=posters[i].r;
71         }
72         sort(x,x+ncount);
73         ncount=unique(x,x+ncount)-x;
74         int num=0;
75         for(i=0;i<ncount;i++)
76         {
77             hash[x[i]]=num;
78             if(i<ncount-1)
79             {
80                 if(x[i+1]-x[i]==1)
81                     num++;
82                 else
83                     num+=2;
84             }
85         }
86         buildtree(0,0,num);
87         int sum=0;
88         for(i=n-1;i>=0;i--)
89         {
90             if(judge(0,hash[posters[i].l],hash[posters[i].r]))
91                 sum++;
92         }
93         cout<<sum<<endl;
94     }
95     return 0;
96 }

时间: 2024-10-22 02:33:04

POJ 2528 线段树+离散化的相关文章

POJ 2528 (线段树+离散化) Mayor&#39;s posters

因为将每个单位都作为一个最小单元的话会爆内存的 所以,将海报的每个端点进行排序,将这些端点最为最小的区间. 毕竟是刚刚接触线段树,理解起来还有些吃力,还是那句话,题做多了慢慢就好了. 萌萌的AC代码君贴上. 1 //#define LOCAL 2 #include <iostream> 3 #include <algorithm> 4 #include <cmath> 5 using namespace std; 6 7 int n; 8 struct CPost 9

Mayor&#39;s posters POJ - 2528 (线段树 + 离散化)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 86160   Accepted: 24734 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

poj 2528(线段树+离散化) 市长的海报

http://poj.org/problem?id=2528 题目大意是市长竞选要贴海报,给出墙的长度和依次张贴的海报的长度区间(参考题目给的图),问最后你能看见的海报有几张 就是有的先贴的海报可能会被后贴的海报完全盖住,那就看不见了 这里就非常抽象的区间更新,墙的长度为建立线段树的总区间,每贴一张海报代表将这个区间的颜色涂为相应的,每张海报的颜色当然 都不相同,求最后又多少种颜色就行,但这里还要用到基础的离散化 离散化是把无限空间中无限的个体映射到有限的空间中去,以此提高算法的时空效率. 简单

Mayor&#39;s posters POJ - 2528 线段树区间覆盖

//线段树区间覆盖 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int N=100010; int flag; struct node{ int l,r; //vis 是这块区域是否完全被覆盖 bool vis; }tr[N<<2]; struct point { int id; int x

poj 2528 线段树+特殊离散化

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 51098   Accepted: 14788 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

poj 2528 线段树+延迟更新

题目链接:http://poj.org/problem?id=2528 题意: 在墙上贴海报,输入n(1<=n<=10000),表示n张海报,后n行输入 两整数l,r  ( 1<= l, r<= 1e9 ),表示海报从编号为l的石头一直贴到编号为r的石头,输入顺序即为粘贴顺序.问n张贴完之后,还能看到多少张海报. 思路: 显然区间操作,很容易联想到线段树操作,只不过区间 l,r 最大范围可达1e9,直接建树,内存必爆.   那么就需要避开1e9的数据,进行离散化,将区间变成(1到n

Picture POJ - 1177 线段树+离散化+扫描线 求交叉图像周长

参考  https://www.cnblogs.com/null00/archive/2012/04/22/2464876.html #include <stdio.h> #include <algorithm> #define LEN 10000 using namespace std; struct Node { int left; int right; int count;//被覆盖次数 //所包含的区间数量,如三条[1,2],[2,3],[4,5]线段被覆盖,则line=2

POJ - 2528 - Mayor&#39;s posters 【线段树+离散化+补点】

http://poj.org/problem?id=2528 #include <cstdio> #include <iostream> #include <set> #include <cstring> #include <string> #define left rt<<1 #define right rt<<1|1 using namespace std; const int MAXN = 32768 + 5; in

Poj 2528 Mayor&#39;s posters (线段树+离散化)

题目连接: http://poj.org/problem?id=2528 题目大意: 有10000000块瓷砖,n张海报需要贴在墙上,每张海报所占的宽度和瓷砖宽度一样,长度是瓷砖长度的整数倍,问按照所给海报顺序向瓷砖上贴海报,最后有几张海报是可见的? 解题思路: 因为瓷砖块数和海报张数多,首选线段树,如果按照常规的建树方式,把瓷砖当做数的节点,肯定会MTL......... 所以我们可以用海报的起点和终点当做树的节点,这样树的节点才有20000个,但是这样建树的话,求海报覆盖了那些节点会很复杂,