STM32学习笔记10(实时时钟RTC)

对于单片机转ARM的同学来说,RTC可能比较少接触。提到实时时钟,更经常想到的是DS1302。当然,在STM32里,自己一个CPU已经足够,不需要DS1302。

实际上,RTC就只一个定时器而已,掉电之后所有信息都会丢失,因此我们需要找一个地方来存储这些信息,于是就找到了备份寄存器。因为它掉电后仍然可以通过纽扣电池供电,所以能时刻保存这些数据。我们在本期教程中将详细讲述RTC原理及例程,以引导大家顺利进入RTC的世界。

1.STM32的RTC模块

RTC模块之所以具有实时时钟功能,是因为它内部维持了一个独立的定时器,通过配置,可以让它准确地每秒钟中断一次。下面就来看以下它的组成结构。

1.1RTC的组成

RTC由两个部分组成:APB1接口部分以及RTC核心部分(感觉说了等于没说,因为任何模块都会有接口部分和它自己的核心部分。请注意,权威的STM32系列手册是这么说的?)。笔者猜想原因可能是STM32所有的外设默认时钟无效,使用某个外设时,再开启时钟,用这样的方式来降低功耗。这里的RTC,APB1接口由APB1总线时钟来驱动。为了突出时钟吧?不过据说APB1接口部分还包括一组16位寄存器。

RTC核心部分又分为预分频模块和一个32位的可编程计数器。前者可使每个TR_CLK周期中RTC产生一个秒中断,后者可被初始化为当前系统时间。此后系统时间会按照TR_CLK周期进行累加,实现时钟功能。

1.2对RTC的操作

我们对RTC的访问,是通过APB1接口来进行的。注意,APB1刚被开启的时候(比如刚上电,或刚复位后),从APB1上读出来的RTC寄存器的第一个值有可能是被破坏了的(通常读到0)。这个不幸,STM32是如何预防的呢?我们在程序中,会先等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1,然后才开始读操作,这时候读出来的值就是OK的。

那么对RTC寄存器的写操作会不会有类似的情况呢?对于写操作,我们只要注意,每一次写操作,必须确保在前一次写操作完成后进行。这个“确保”,

是通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。只有当RTOFF状态位是1,才可以写RTC寄存器。

2.RTC的编程

RTC的例程,主要是设置RTC时钟,使得其在超级终端上显示出当前的时钟。这个时钟的显示是“不停地走”。而且掉电后,重新上电,时钟仍然在走,仍然显示当前的时间。当然,如果感兴趣,您可以让它在LCD上显示——那就是一个名副其实的电子钟了。

编程的时候,首先要注意备份寄存器BKP_DR1,它做了一件关键的事情:判断RTC是否已经被设置过。因为RTC跟其他计时器不同,它是使用纽扣电池单独供电工作,所以它不会每次上电或者复位都被重置。判断RTC是否已经被设置过,可以决定当前是否需要去设置RTC。如果刚安装电池,第一次上电,自然需要去设置。否则的话,我们只要让它显示当前时钟即可。

当第一次使用RTC的时候,可以参考手册。这里对第一次配置需要做的工作进行了总结:

1、打开电源管理和备份寄存器时钟。注意,一定要打开备份寄存器的时钟。我们正是通过在备份寄存器写固定的数据来判断芯片是否第一次实用RTC,从而在系统运行RTC时提示配置时钟的。

2、使能RTC和备份寄存器的访问(复位默认是关闭的,以防止可能存在的意外的写操作。)。

3、选择外部低速晶体为RTC时钟,并使能时钟。笔者当初调试RTC的时候,犯了一个低级错误:由于没有定义如下:#defineRTCClockSource_LSE

导致程序一直停留在这里:/*WaittillLSEisready*/

while(RCC_GetFlagStatus(RCC_FLAG_LSERDY)==RESET)

{

}

希望大家看完本教程后,能避免这个错误。

4、使能秒中断,程序里在秒中断里置位标志位来通知主程序显示时间数据,同时在32位计数器到23:59:59时清零;

5、设置RTC预分频器值产生1秒信号计算公式fTR_CLK=fRTCCLK/(PRL+1),我们设置32767来产生秒信号。

我们再次强调:所有在对RTC寄存器操作之前都要判断读写操作是否完成,即内部是否有读写操作。

下面来看代码:/*SystemClocksConfiguration*/RCC_Configuration();

/*NVICconfiguration*/

NVIC_Configuration();/*ConfiguretheGPIOs*/GPIO_Configuration();

/*ConfiguretheUSART1*/

USART_Configuration();

以上四个函数调用,虽然最平常不过,但是还是要引起大家的关注。特别是中断NVIC_Configuration();以及USART_Configuration();,希望大家仔细查阅具体的函数实现。

与本期教程有关系第一个要点,就是时钟,为避免遗漏,笔者将其代码放在第一位:RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR|RCC_APB1Periph_PWR,ENABLE);

接着我们读取备份寄存器BKP_DR1中的值来判断是否是第一次上电,如果不是则直接显示时钟,否则进行时间设置。当BKP_DR1的值不为0xAAAA,说明是第一次上电,此时需要对RTC进行初始化。注意初始化的实现函数RTC_Configuration();,为什么那么写,请参考我们之前给出的“第一次使用RTC的配置工作总结”,然后进行时钟设置。注意,因为我们需要进行写操作,所以根据固件库手册,要先调用RTC_WaitForLastTask(),等待标志位RTOFF被设置,保证在前一次写操作结束后才能进行。调用RTC_SetCounter(Time_Regulate());,将计数值写入RTC计数器。

由于后面要通过BKP_WriteBackupRegister()函数对BKP_DR1写操作,因此之前还需要进行一次RTC_WaitForLastTask(),这样,对时间的设置就完成了。剩下的代码,比较简单,主要是注意如下:

RTCCount=RTC_GetCounter();//获得计数值并计算当前时钟/*Computehours*/

THH=RTCCount/3600;/*Computeminutes*/

TMM=(RTCCount%3600)/60;/*Computeseconds*/

TSS=(RTCCount%3600)%60;

这是通过RTC_GetCounter();函数获取计数值,然后把这个计数值分别用小时、分钟、秒来表示的过程。最后还需要调用printf函数把它显示出来。

以上就是整个RTC的过程,期待大家拍砖。如需拍砖,请直接前往猛拍,以促进芯达STM32进一步改善教程,谢谢!

时间: 2024-10-10 16:07:28

STM32学习笔记10(实时时钟RTC)的相关文章

STM32学习笔记2-系统时钟知识及程序配置

一:基本知识 1.  STM32F103ZE有5个时钟源:HSI.HSE.LSI.LSE.PLL. ①.HSI是快速内部时钟,RC振荡器,频率为8MHz,精度不高.   ②.HSE是快速外部时钟,可接石英/陶瓷谐振器,或者接外部时 钟源,频率范围为4MHz~16MHz. ③.LSI是低速内部时钟,RC振荡器,频率为40kHz,提供低功耗时钟. ④.LSE是低速外部时钟,接频率为32.768kHz的石英晶体. ⑤.PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2.HSE或者HSE/2. 倍频

STM32F4学习笔记10——RTC实时时钟

RTC实时时钟 实时时钟 (RTC) 是一个独立的 BCD 定时器/计数器.RTC 提供一个日历时钟.两个可编程 闹钟中断,以及一个具有中断功能的周期性可编程唤醒标志.RTC 还包含用于管理低功耗模 式的自动唤醒单元. 两个 32 位寄存器包含二进码十进数格式 (BCD) 的秒.分钟.小时(12 或 24 小时制).星 期几.日期.月份和年份.此外,还可提供二进制格式的亚秒值. 系统可以自动将月份的天数补偿为 28.29(闰年).30 和 31 天.并且还可以进行夏令时 补偿. 其它 32 位寄

STM32学习笔记——USART串口(向原子哥和火哥学习)

一.USART简介 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换.USART利用分数波特率发生器提供宽范围的波特率选择. STM32 的串口资源相当丰富的,功能也相当强劲.STM32F103ZET6 最多可提供 5 路串口,有分数波特率发生器,支持同步单向通信和半双工单线通信,支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作.它还允许多处理器通信.

STM32学习笔记——OLED屏

STM32学习笔记--OLED屏 OLED屏的特点: 1.  模块有单色和双色可选,单色为纯蓝色,双色为黄蓝双色(本人选用双色): 2.  显示尺寸为0.96寸 3.  分辨率为128*64 4.  多种接口方式,该模块提供了总共 5 种接口包括: 6800. 8080 两种并行接口方式. 3线或4线的SPI接口,IIC接口方式 5.  不需要高压,直接接3.3V就可以工作:(可以与stm32的引脚直接相接) OLED图片: OLED引脚介绍: CS:OLED片选信号 RST:OLED复位端口

STM32学习笔记之一(初窥STM32)

怎么做好学习笔记? 答:自我感知-->学习知识-->归纳总结-->自我升华(真正属于自己的知识是,抛开书本,运用时,你还能记得的思想) 自我感知--看到知识概念,先自我感觉那应该是个什么东西(如:寄存器---寄存东西(数据)的地方嘛) 学习知识--有了自我感知后,就需要验证自己的感知是否正确,请记住,带着自己思想的学习是最高效的学习(如:寄存器---存什么东西呢?) 归纳总结--学习了大量知识后,就该汇总汇总了(如:寄存器---存数据(通用寄存器),存命令(PC),存地址(LR)) 自我

STM32学习笔记——点亮LED

STM32学习笔记——点亮LED 本人学习STM32是直接通过操作stm32的寄存器,使用的开发板是野火ISO-V2版本: 先简单的介绍一下stm32的GPIO: stm32的GPIO有多种模式: 1.输入浮空 2.输入上拉 3.输入下拉 4.模拟输入 5.开漏输出 6.推挽式输出 7.推挽式复用功能 8.开漏复用功能 stm32GPIO模式设置相关寄存器设置的介绍 stm32中文参考手册中对GPIO模式设置对应寄存器的详细介绍: 下图为开发板LED的接线图: 根据上面的电路图可知,将GPIOB

STM32学习笔记1(ADC多通道采样)

STM32 ADC多通道转换描述:用ADC连续采集11路模拟信号,并由DMA传输到内存.ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ.在每次转换结束后,由DMA循环将转换的数据传输到内存中.ADC可以连续采集N次求平均值.最后通过串口传输出最后转换的结果.程序如下:#i nclude "stm32f10x.h" //这个头文件包括STM32F10x所有外围寄存器.位.内存映射的定义#i nclude "eval.h" //头文件(包括串口.按键.L

STM32学习笔记3(TIM输入捕获)

PWM 输入捕获模式< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" /> 一.概念理解 PWM输入捕获模式时输入捕获模式的特例 1.每个定时器有四个输入通道IC1.IC2.IC3.IC4,且IC1 IC2一组,IC3 IC4一组,并可是设置管脚和寄存器的对应关系 2.两个TI输出映射了两个ICx信号 3.这两个ICx信号分别在相反的极性边沿有效 4.两个边沿

STM32学习笔记1—实习回顾1

一.四步设置GPIO串口 RCC->APB2ENR|=1<<3;    //使能PORTB时钟 GPIOB->CRL&=0XFF0FFFFF;  //位初始化 GPIOB->CRL|=0X00300000;//PB.5  推挽输出 GPIOB->ODR|=1<<5;      //PB.5  输出高 二.三种方法设置io口电平 1.宏定义方式:#define BEEP PBout(8)  BEEP=0; 2.GPIOB->ODR|=1<&