Girl Love Value
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 748 Accepted Submission(s): 417
Problem Description
Love in college is a happy thing but always have so many pity boys or girls can not find it.
Now a chance is coming for lots of single boys. The Most beautiful and lovely and intelligent girl in HDU,named Kiki want to choose K single boys to travel Jolmo Lungma. You may ask one girls and K boys is not a interesting thing to K boys. But you may not
know Kiki have a lot of friends which all are beautiful girl!!!!. Now you must be sure how wonderful things it is if you be choose by Kiki.
Problem is coming, n single boys want to go to travel with Kiki. But Kiki only choose K from them. Kiki every day will choose one single boy, so after K days the choosing will be end. Each boys have a Love value (Li) to Kiki, and also have a other value (Bi),
if one boy can not be choose by Kiki his Love value will decrease Bi every day.
Kiki must choose K boys, so she want the total Love value maximum.
Input
The input contains multiple test cases.
First line give the integer n,K (1<=K<=n<=1000)
Second line give n integer Li (Li <= 100000).
Last line give n integer Bi.(Bi<=1000)
Output
Output only one integer about the maximum total Love value Kiki can get by choose K boys.
Sample Input
3 3 10 20 30 4 5 6 4 3 20 30 40 50 2 7 6 5
Sample Output
47 104
Author
yifenfei
Source
Recommend
lcy | We have carefully selected several similar problems for you: 2668 2675 2671 2673 2672
题目大意:有n个男孩,每个男孩对那个女孩都有一个爱慕值li,一个递减值bi,当女孩不选他时他的爱慕之减去没选他的天数乘递减值,每天只能选一个男孩,问选m个获得最大的m值是多少
ac代码
#include<stdio.h> #include<stdlib.h> #include<string.h> #define max(a,b) (a>b?a:b) struct s { int li,bi; }a[1010]; int dp[1010]; int cmp(const void *a,const void *b) { return (*(struct s *)b).bi-(*(struct s *)a).bi; } int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { int i,j; for(i=0;i<n;i++) { scanf("%d",&a[i].li); } for(i=0;i<n;i++) { scanf("%d",&a[i].bi); } qsort(a,n,sizeof(a[0]),cmp); memset(dp,0,sizeof(dp)); for(i=0;i<n;i++) { for(j=m;j>=1;j--) { dp[j]=max(dp[j],dp[j-1]+a[i].li-(j-1)*a[i].bi); } } printf("%d\n",dp[m]); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。