自旋锁spin_lock和raw_spin_lock

自旋锁spin_lock和raw_spin_lock

http://blog.csdn.net/droidphone/article/details/7395983

本文不打算详细探究spin_lock的详细实现机制,只是最近对raw_spin_lock的出现比较困扰,搞不清楚什么时候用spin_lock,什么时候用raw_spin_lock,因此有了这篇文章。

/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/

1.  临界区(Critical Section)

我们知道,临界区是指某个代码区间,在该区间中需要访问某些共享的数据对象,又或者是总线,硬件寄存器等,通常这段代码区间的范围要控制在尽可
能小的范围内。临界区内需要对这些数据对象和硬件对象的访问进行保护,保证在退出临界区前不会被临界区外的代码对这些对象进行修改。出现以下几种情形时,
我们需要使用临界区进行保护:

  • (1)  在可以抢占(preemption)的系统中,两个线程同时访问同一个对象;
  • (2)  线程和中断同时访问同一个对象;
  • (3)  在多核系统中(SMP),可能两个CPU可能同时访问同一个对象;

2.  自旋锁(spin_lock)

针对单处理器系统,对第一种情况,只要临时关闭系统抢占即可,我们可以使用以下方法:

[cpp] view plaincopy

  1. preempt_disable();
  2. .....
  3. // 访问共享对象的代码
  4. ......
  5. preempt_enable();

同样地,针对单处理器系统,第二种情况,只要临时关闭中断即可,我们可以使用以下方法:

[cpp] view plaincopy

  1. local_irq_disable();
  2. ......
  3. // 访问共享对象的代码
  4. ......
  5. local_irq_enable();

那么,针对多处理器的系统,以上的方法还成立么?答案很显然:不成立。

对于第一种情况,虽然抢占被禁止了,可是另一个CPU上还有线程在运行,如果这个线程也正好要访问该共享对象,上面的代码段显然是无能为力了。

对于第二种情况,虽然本地CPU的中断被禁止了,可是另一个CPU依然可以产生中断,如果他的中断服务程序也正好要访问该共享对象,上面的代码段也一样无法对共享对象进行保护。

实际上,在linux中,上面所说的三种情况都可以用自旋锁(spin_lock)解决。基本的自旋锁函数对是:

  • spin_lock(spinlock_t *lock);
  • spin_unlock(spinlock_t *lock);

对于单处理器系统,在不打开调试选项时,spinlock_t实际上是一个空结构,把上面两个函数展开后,实际上就只是调用
preempt_disable()和preempt_enable(),对于单处理器系统,关掉抢占后,其它线程不能被调度运行,所以并不需要做额外的
工作,除非中断的到来,不过内核提供了另外的变种函数来处理中断的问题。

对于多处理器系统,spinlock_t实际上等效于内存单元中的一个整数,内核保证spin_lock系列函数对该整数进行原子操作,除了调
用preempt_disable()和preempt_enable()防止线程被抢占外,还必须对spinlock_t上锁,这样,如果另一个CPU
的代码要使用该临界区对象,就必须进行自旋等待。

对于中断和普通线程都要访问的对象,内核提供了另外两套变种函数:

  • spin_lock_irq(spinlock_t *lock);
  • spin_unlock_irq(spinlock_t *lock);

和:

  • spin_lock_irqsave(lock, flags);
  • spin_lock_irqrestore(lock, flags);

我们可以按以下原则使用上面的三对变种函数(宏):

  • 如果只是在普通线程之间同时访问共享对象,使用spin_lock()/spin_unlock();
  • 如果是在中断和普通线程之间同时访问共享对象,并且确信退出临界区后要打开中断,使用spin_lock_irq()/spin_unlock_irq();
  • 如果是在中断和普通线程之间同时访问共享对象,并且退出临界区后要保持中断的状态,使用spin_lock_irqsave()/spin_unlock_irqrestore();

其实变种还不止这几个,还有read_lock_xxx/write_lock_xxx、spin_lock_bh/spin_unlock_bh、spin_trylock_xxx等等。但常用的就上面几种。

3.  raw_spin_lock

在2.6.33之后的版本,内核加入了raw_spin_lock系列,使用方法和spin_lock系列一模一样,只是参数有
spinlock_t变为了raw_spinlock_t。而且在内核的主线版本中,spin_lock系列只是简单地调用了raw_spin_lock
系列的函数,但内核的代码却是有的地方使用spin_lock,有的地方使用raw_spin_lock。是不是很奇怪?要解答这个问题,我们要回到
2004年,MontaVista Software, Inc的开发人员在邮件列表中提出来一个Real-Time
Linux Kernel的模型,旨在提升Linux的实时性,之后Ingo
Molnar很快在他的一个项目中实现了这个模型,并最终产生了一个Real-Time preemption的patch。

该模型允许在临界区中被抢占,而且申请临界区的操作可以导致进程休眠等待,这将导致自旋锁的机制被修改,由原来的整数原子操作变更为信号量操
作。当时内核中已经有大约10000处使用了自旋锁的代码,直接修改spin_lock将会导致这个patch过于庞大,于是,他们决定只修改哪些真正不
允许抢占和休眠的地方,而这些地方只有100多处,这些地方改为使用raw_spin_lock,但是,因为原来的内核中已经有
raw_spin_lock这一名字空间,用于代表体系相关的原子操作的实现,于是linus本人建议:

  • 把原来的raw_spin_lock改为arch_spin_lock;
  • 把原来的spin_lock改为raw_spin_lock;
  • 实现一个新的spin_lock;

写到这里不知大家明白了没?对于2.6.33和之后的版本,我的理解是:

  • 尽可能使用spin_lock;
  • 绝对不允许被抢占和休眠的地方,使用raw_spin_lock,否则使用spin_lock;
  • 如果你的临界区足够小,使用raw_spin_lock;

对于没有打上Linux-RT(实时Linux)的patch的系统,spin_lock只是简单地调用raw_spin_lock,实际上他们是完全一
样的,如果打上这个patch之后,spin_lock会使用信号量完成临界区的保护工作,带来的好处是同一个CPU可以有多个临界区同时工作,而原有的
体系因为禁止抢占的原因,一旦进入临界区,其他临界区就无法运行,新的体系在允许使用同一个临界区的其他进程进行休眠等待,而不是强占着CPU进行自旋操
作。写这篇文章的时候,内核的版本已经是3.3了,主线版本还没有合并Linux-RT的内容,说不定哪天就会合并进来,也为了你的代码可以兼容
Linux-RT,最好坚持上面三个原则。

时间: 2024-08-06 08:07:39

自旋锁spin_lock和raw_spin_lock的相关文章

自旋锁spin_lock和raw_spin_lock(转)

1.  临界区(Critical Section) 我们知道,临界区是指某个代码区间,在该区间中需要访问某些共享的数据对象,又或者是总线,硬件寄存器等,通常这段代码区间的范围要控制在尽可能小的范围内.临界区内需要对这些数据对象和硬件对象的访问进行保护,保证在退出临界区前不会被临界区外的代码对这些对象进行修改.出现以下几种情形时,我们需要使用临界区进行保护: (1)  在可以抢占(preemption)的系统中,两个线程同时访问同一个对象: (2)  线程和中断同时访问同一个对象: (3)  在多

【转】自旋锁spin_lock和raw_spin_lock

本文转自http://blog.csdn.net/droidphone/article/details/7395983 本文不打算详细探究spin_lock的详细实现机制,只是最近对raw_spin_lock的出现比较困扰,搞不清楚什么时候用spin_lock,什么时候用raw_spin_lock,因此有了这篇文章. /*****************************************************************************************

linux驱动开发(十一)linux内核信号量、互斥锁、自旋锁

参考: http://www.360doc.com/content/12/0723/00/9298584_225900606.shtml http://www.cnblogs.com/biyeymyhjob/archive/2012/07/21/2602015.html http://blog.chinaunix.net/uid-25100840-id-3147086.html http://blog.csdn.net/u012719256/article/details/52670098 --

多线程编程之自旋锁

一.什么是自旋锁 一直以为自旋锁也是用于多线程互斥的一种锁,原来不是! 自旋锁是专为防止多处理器并发(实现保护共享资源)而引入的一种锁机制.自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用.无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁.但是两者在调度机制上略有不同.对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态.但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁

Linux内核自旋锁spinlock_t机制

摘自:https://www.jianshu.com/p/f0d6e7103d9b spinlock用在什么场景? 自旋锁用在临界区代码非常少的情况. spinlock在使用时有什么注意事项? 临界区代码应该尽可能精简 不允许睡眠(会出现死锁) Need to have interrupts disabled when locked by ordinary threads, if shared by an interrupt handler.(会出现死锁) spinlock是怎么实现的? 看一下

一个无锁消息队列引发的血案:怎样做一个真正的程序员?(二)——月:自旋锁

前续 一个无锁消息队列引发的血案:怎样做一个真正的程序员?(一)——地:起因 一个无锁消息队列引发的血案:怎样做一个真正的程序员?(二)——月:自旋锁 平行时空 在复制好上面那一行我就先停下来了,算是先占了个位置,虽然我知道大概要怎么写,不过感觉还是很乱. 我突然想到,既然那么纠结,那么混乱,那么不知所措,我们不如换个视角.记得高中时看过的为数不多的长篇小说<穆斯林的葬礼>,作者是:霍达(女),故事描写了两个发生在不同时代.有着不同的内容却又交错扭结的爱情悲剧,一个是“玉”的故事,一个是“月”

自旋锁

自旋锁是一个互斥设备,它只有两个值:“锁定”和“解锁”.它通常实现为某个整数值中的某个位.希望获得某个特定锁得代码测试相关的位.如果锁可用,则“锁定”被设置,而代码继续进入临界区:相反,如果锁被其他人获得,则代码进入忙循环(而不是休眠,这也是自旋锁和一般锁的区别)并重复检查这个锁,直到该锁可用为止,这就是自旋的过程.“测试并设置位”的操作必须是原子的,这样,即使多个线程在给定时间自旋,也只有一个线程可获得该锁. 自旋锁最初是为了在多处理器系统(SMP)使用而设计的,但是只要考虑到并发问题,单处理

Linux内核同步机制--自旋锁【转】

本文转载自:http://www.cppblog.com/aaxron/archive/2013/04/12/199386.html 自旋锁与互斥锁有点类似,只是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名. 由于自旋锁使用者一般保持锁时间非常短,因此选择自旋而不是睡眠是非常必要的,自旋锁的效率远高于互斥锁. 信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因此只能在进

深入分析Linux自旋锁

原创 2016-08-12 tekkamanninja CU技术社区 作者| tekkamanninja本文版权由tekkamanninja所有,如需转载,请联系本公众号获取授权!在复习休眠的过程中,我想验证自旋锁中不可休眠,所以编写了一个在自旋锁中休眠的模块.但是在我的ARMv7的单核CPU(TI的A8芯片)中测试的时候,不会锁死,并且自旋锁可以多次获取.实验现象和我对自旋锁和休眠的理解有出路.      我后来我将这个模块放到自己的PC上测试,成功锁死了,说明我的模块原理上没有问题.但是为什