poj 3525 凸多边形多大内切圆

Most Distant Point from the Sea

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 4758   Accepted: 2178   Special Judge

Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
  ?  
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

Sample Input

4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0

Sample Output

5000.000000
494.233641
34.542948
0.353553
/*
poj 3525 凸多边形多大内切圆

给你一个凸多边形的小岛地图,求出岛中到海岸线的最远距离。
相当于求多边形中最大的内切圆的半径,但是想了很久并没有发现什么方法 卒

问题可以转化成能够在多边形中找到一个圆。也就是二分多边形缩小的长度,然后
判断当前能否找到一个圆。
如果存在一个圆的话,那么它的圆心肯定是这个凸多边形的核。所以可以通过二分
和半平面相交判断解决
hhh-2016-05-11 22:10:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson  (i<<1)
#define rson  ((i<<1)|1)
typedef long long ll;
using namespace std;
const int  maxn = 1510;
const double PI = 3.1415926;
const double eps = 1e-8;

int sgn(double x)
{
    if(fabs(x) < eps) return 0;
    if(x < 0)
        return -1;
    else
        return 1;
}

struct Point
{
    double x,y;
    Point() {}
    Point(double _x,double _y)
    {
        x = _x,y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x-b.x,y-b.y);
    }
    double operator ^(const Point &b)const
    {
        return x*b.y-y*b.x;
    }
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
};

struct Line
{
    Point s,t;
    double k;
    Line() {}
    Line(Point _s,Point _t)
    {
        s = _s;
        t = _t;
        k = atan2(t.y-s.y,t.x-s.x);
    }
    Point operator &(const Line &b) const
    {
        Point res = s;
        double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
        res.x += (t.x-s.x)*ta;
        res.y += (t.y-s.y)*ta;
        return res;
    }
};

bool HPIcmp(Line a,Line b)
{
    if(fabs(a.k-b.k) > eps) return a.k<b.k;
    return ((a.s-b.s)^(b.t-b.s)) < 0;
}
Line li[maxn];

double CalArea(Point p[],int n)
{
    double ans = 0;
    for(int i = 0; i < n; i++)
    {
        ans += (p[i]^p[(i+1)%n])/2;
    }
    return ans;
}

void HPI(Line line[],int n,Point res[],int &resn)
{
    int tot =n;
    sort(line,line+n,HPIcmp);
    tot = 1;
    for(int i = 1; i < n; i++)
    {
        if(fabs(line[i].k - line[i-1].k) > eps)
            line[tot++] = line[i];
    }
    int head = 0,tail = 1;
    li[0] = line[0];
    li[1] = line[1];
    resn = 0;
    for(int i = 2; i < tot; i++)
    {
        if(fabs((li[tail].t-li[tail].s)^(li[tail-1].t-li[tail-1].s)) < eps||
                fabs((li[head].t-li[head].s)^(li[head+1].t-li[head+1].s)) < eps)
            return;
        while(head < tail && (((li[tail] & li[tail-1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
            tail--;
        while(head < tail && (((li[head] & li[head+1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
            head++;
        li[++tail] = line[i];
    }
    while(head < tail && (((li[tail] & li[tail-1]) - li[head].s) ^ (li[head].t-li[head].s)) > eps)
        tail--;
    while(head < tail && (((li[head] & li[head-1]) - li[tail].s) ^ (li[tail].t-li[tail].t)) > eps)
        head++;
    if(tail <= head+1)
        return;
    for(int i = head; i < tail; i++)
        res[resn++] = li[i]&li[i+1];
    if(head < tail-1)
        res[resn++] = li[head]&li[tail];
}
Point p0;
Point lis[maxn];
Line line[maxn];
double dist(Point a,Point b)
{
    return sqrt((a-b)*(a-b));
}

bool cmp(Point a,Point b)
{
    double t = (a-p0)^(b-p0);
    if(sgn(t) > 0)return true;
    else if(sgn(t) == 0 && sgn(dist(a,lis[0])-dist(b,lis[0])) <= 0)
        return true;
    else
        return false;
}

Point ta,tb;
Point fans[maxn];
void fin(Point a,Point b,double mid)
{
    double len = dist(a,b);
    double dx = (a.y-b.y)*mid/len;
    double dy = (b.x-a.x)*mid/len;
    ta.x = a.x+dx,ta.y = a.y+dy;
    tb.x = b.x+dx,tb.y = b.y+dy;
}

int main()
{
    //freopen("in.txt","r",stdin);
    int n,T;
    while(scanf("%d",&n)!= EOF && n)
    {
        for(int i = 0; i < n; i++)
        {
            scanf("%lf%lf",&lis[i].x,&lis[i].y);
        }
        int ans;
        double l=0,r=100000;
        double tans = 0;
        while(r - l > eps)
        {
            double mid = (l+r) /2;
            for(int i = 0; i < n; i++)
            {
                fin(lis[i],lis[(i+1)%n],mid);
                line[i] = Line(ta,tb);
            }
            HPI(line,n,fans,ans);
            if(ans)
                l = mid+eps,tans = mid;
            else
                r = mid-eps;
        }
        printf("%.6f\n",tans);
    }
    return 0;
}

  

时间: 2024-10-06 10:19:59

poj 3525 凸多边形多大内切圆的相关文章

poj 3525 Most Distant Point from the Sea 半平面交 + 二分

题目来源: http://poj.org/problem?id=3525 分析: 题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离. 思路 : 每次将凸多边形每条边往里平移d,判断是否存在核:二分d即可. 多边形边上的点(x , y)往里平移d 后的 坐标: s , e  为向量的 起点和终点, len 为起点和终点的距离, h 为平移的距离 x' = x + dx y' = y + dy dx = ( s.y - e.y ) / len * h ,( 原理 是 利用 三角形的相似

POJ 3525 二分+半平面交

Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3812   Accepted: 1779   Special Judge Description The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural t

Poj 3525 Most Distant Point from the Sea

地址:http://poj.org/problem?id=3525 题目: Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5167   Accepted: 2331   Special Judge Description The main land of Japan called Honshu is an island surrounded by the s

POJ 3525 半平面交+二分

二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 #include <cmath> 6 7 using namespace std; 8 #define N 105 9 #define ll long long 10 #de

POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <math.h> 5 const double eps = 1e-10 ; 6 7 using namespace std ; 8 9 struct node 10 { 11 do

【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中心平移就是向向量左手边平移,求出长度为r方向指向向量左手边的向量p,a+p指向b+p就是平移后的向量. 半平面交就是对于每个半平面ax+by+c>0,将当前数组里的点(一开始是所有点)带入,如果满足条件,那么保留该点,否则,先看i-1号点是否满足条件,如果满足,那么将i-1和i点所在直线和直线ax+

POJ 3525 Most Distant Point from the Sea 二分+半平面交

题目大意:给出一个岛的海岸线的轮廓,求这个岛上的所有点到海岸的最长距离是多少. 思路:求多边形内切圆的问题要用二分+半平面交解决.二分半径的长度,然后将所有的边向左侧移动这个二分的长度,然后利用半平面交来判断是否能够满足条件.如果满足条件就提高下界,否则减小上界. 我的移动的方法是这样的,首先每条边都要用点向量式来表示,就是边上任意一点和这条边的方向向量.这样做以后的操作会方便很多.然后将每个直线的向左的法向量求出来(比如l的向量是v(x,y),那么它向左侧的法向量是(-y,x)),然后将法向量

POJ 3525 /// 半平面交 模板

题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是离海最远的点 #include <cstdio> #include <cmath> #include <vector> #include <algorithm> using namespace std; const double eps=1e-10; doubl

[转] POJ几何分类

转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板很重要,模板必须高度可靠.3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面大部分是模板.如果代码一片混乱,那么会严重影响做题正确率.4.注意精度控制.5.能用整数的地方尽量用整数,要想到扩大数据的方法(扩大一倍,或扩大sqrt2).因为整数不用考虑浮点误差,而且运算比浮点快. 一.点