HDU 1222 Wolf and Rabbit (扩展欧几里德应用)

Wolf and Rabbit

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 6292    Accepted Submission(s): 3142

Problem Description

There is a hill with n holes around. The holes are signed from 0 to n-1.

A rabbit must hide in one of the holes. A wolf searches the rabbit in anticlockwise order. The first hole he get into is the one signed with 0. Then he will get into the hole every m holes. For example, m=2 and n=6, the wolf will get into the holes which are
signed 0,2,4,0. If the rabbit hides in the hole which signed 1,3 or 5, she will survive. So we call these holes the safe holes.

Input

The input starts with a positive integer P which indicates the number of test cases. Then on the following P lines,each line consists 2 positive integer m and n(0<m,n<2147483648).

Output

For each input m n, if safe holes exist, you should output "YES", else output "NO" in a single line.

Sample Input

2
1 2
2 2

Sample Output

NO
YES

Source

杭州电子科技大学第三届程序设计大赛

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1222

题目大意:n个数0 ~ n-1,现在从0开始每次可到距离自己逆时针方向m个数的地方,问是否有数字能不被访问到

题目分析:题是水题,yy一下就能出来,gcd(n, m) == 1时都能被访问到,下面给出证明:

显然走了a次m步所到的位置为pos = am % n = am - (am / n) * n,令am / n = -b,可以得到pos = am + bn (b < 0,0 <= pos < n),根据扩展欧几里德算法我们知道对于不定方程am + bn = gcd(n, m) = pos一定有解,因此只要是gcd(n, m)的倍数的数都能被访问到,所以当gcd(n, m) = 1时,pos可以为0 ~ n - 1的任意一个

#include <cstdio>

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int T, n, m;
    scanf("%d", &T);

    while(T--)
    {
        scanf("%d %d", &n, &m);
        printf("%s\n", gcd(n, m) == 1 ? "NO" : "YES");
    }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-13 16:49:51

HDU 1222 Wolf and Rabbit (扩展欧几里德应用)的相关文章

HDU 1222: Wolf and Rabbit

HDU 1222: Wolf and Rabbit ///@author Sycamore, ZJNU ///@accepted_on 2017-01-24 #include<iostream> using namespace std; unsigned gcd(unsigned a, unsigned b) { return b == 0 ? a : gcd(b, a % b); } int main() { int P; cin >> P; while (P--) { unsi

hdu 1222 Wolf and Rabbit (GCD)

Wolf and Rabbit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5502    Accepted Submission(s): 2765 Problem Description There is a hill with n holes around. The holes are signed from 0 to n-1.

hdu 1576 A/B (扩展欧几里德简单运用)

http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3351 Accepted Submission(s): 2545 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必

HDU 1576 A/B【扩展欧几里德】

设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> typedef long long ll; ll ex_gcd(ll a,ll b,ll &x,ll &y){ if(!b){ x=1,y=0; return a; } ll ans=ex_gcd(b,a%b,y,x); y-=a/b*x; return ans; } void cal(ll

HDU 1576 A/B(扩展欧几里德变形)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个T,表示有T组数据. 每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9). Output 对应每组数据输出(A/B)%9973. Sampl

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

HDU 2669 Romantic(扩展欧几里德)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2669 Problem Description The Sky is Sprite. The Birds is Fly in the Sky. The Wind is Wonderful. Blew Throw the Trees Trees are Shaking, Leaves are Falling. Lovers Walk passing, and so are You. ..........

HDU 1576 A/B 扩展欧几里德算法

A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2017    Accepted Submission(s): 1469 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个

HDU 1576 A/B(扩展欧几里德变形)

一道扩展欧几里德的变形题目 题中给出 n = A%9973 → n = A - A/9973*9973(若x = A%B 则 x = A - A/B*B) 因为A能整除B 所以设x = A/B → A = B*x 所以原式 = B*x - A/9973*9973 = n 设y = A/9973 B*x - 9973y = n 然后利用扩展欧几里德求出x即可. #include <iostream> #include <cstdio> #include <algorithm&g