莫比乌斯反演 - HNU 13412 Cookie Counter

Cookie Counter

Problem‘s Link: http://acm.hnu.cn/online/?action=problem&type=show&id=13412&courseid=0



Mean:

将N分为D份,每份不超过X,有多少种分法?

analyse:

莫比乌斯反演的运用。

首先我们想到的是迭代,但是数据太大,一路迭代下去必定爆栈+超内存+TLE。

那么就需要用莫比乌斯反演来优化多项式求和。我们枚举X,对于满足条件的X,使用莫比乌斯反演求和统计答案,不满足条件的X,更新往下迭代的P值。最后对P求和即为答案。

这题DP也可以做,不过上面的方法从时间和空间上都大大优于DP。

Time complexity: O(N)

Source code: 

/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-08-16-16.39
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define  LL long long
#define  ULL unsigned long long
using namespace std;
const LL mod = 1000000007;
LL inv[5000];
LL N,X,D;
void pre()
{
     inv[1] = 1;
     for(int i=2; i<5000; i++)
           inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
int main()
{
     pre();
     while(scanf("%d %lld %d",&N,&D,&X) && N)
     {
           LL ans = 0;
           for(int i=0; i*X<=N; i++)
           {
                 LL p = 1;
                 if(i <= D)
                 {
                       for(int j=1; j<=i; j++)
                       {
                             p = (D - j + 1) % mod * p % mod;
                             p = p * inv[j] % mod;
                       }
                 }
                 else p = 0;
                 for(int j=0; j<i; j++) p = (mod - p);
                 int gap = N - i*X;
                 for(int j=1; j<=gap; j++)
                 {
                       p = (D + gap - j + mod) % mod * p % mod;
                       p = p * inv[j] % mod;
                 }
                 ans = ans + p;
                 if(ans >= mod)
                       ans -= mod;
           }
           printf("%lld\n",ans);
     }
     return 0;
}

时间: 2024-10-27 00:00:24

莫比乌斯反演 - HNU 13412 Cookie Counter的相关文章

bzoj 2820 / SPOJ PGCD 莫比乌斯反演

那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=

hdu1695(莫比乌斯反演)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b],  y 属于 [c, d], 求 gcd(x, y) = k 的 x, y 的对数 . 其中 a = b = 1 . 注意: (x, y), (y, x) 算一种情况 . 思路: 莫比乌斯反演 可以参考一下: http://blog.csdn.net/lixuepeng_001/article/details/5057

算法学习——莫比乌斯反演(1)

.. 省选GG了,我果然还是太菜了.. 突然想讲莫比乌斯反演了 那就讲吧! 首先我们看一个等式-- (d|n表示d是n的约束) 然后呢,转换一下 于是,我们就发现! 没错!F的系数是有规律的! 规律is here! 公式: 这个有什么卵用呢? 假如说有一道题 F(n)可以很simple的求出来而求f(n)就比较difficult了,该怎么办呢? 然后就可以用上面的式子了 是莫比乌斯函数,十分有趣 定义如下: 若d=1,则=1 若d=p1*p2*p3...*pk,且pi为互异素数,则=(-1)^k

bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue

BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点的个数是gcd(x,y) 2,新学了一发求gcd(x,y)=k有多少对的姿势,已知0<x<=n,0<y<=m 令x=min(n,m),令f[i]代表gcd(x,y)=i的对数, 那么通过O(xlogx)的复杂度就可以得到f[1]到f[n](反着循环) 普通的容斥(即莫比乌斯反演)其实也

容斥原理与莫比乌斯反演的关系

//容斥原理,c[i]表示i当前要算的次数,复杂度和第二层循环相关 O(nlogn~n^2) LL in_exclusion(int n,int *c) { for(int i=0;i<=n;i++) c[i]=1; //不一定是这样初始化,要算到的才初始化为1 LL ans=0; for(int i=0;i<=n;i++) if(i要算) { ans+=(统计数)*c[i]; for(int j=i+1;j<=n;j++) if(i会算到j) c[j]-=c[i];//j要算的次数减去

BZOJ 1114 Number theory(莫比乌斯反演+预处理)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , an.求gcd(ai, aj) = 1 且 i < j的对数. 思路:利用莫比乌斯反演很快就能得到公式,但是求解时我们要知道序列中1, 2, 3, ... , max(a1, a2, ... , an)的倍数各是多少.我们用num[i]=k,来表示序列中有k个数是i的倍数,那么这部分对结果的影响是m

ACdream 1114(莫比乌斯反演)

传送门:Number theory 题意:给n个数,n 和 每个数的范围都是 1---222222,求n个数中互质的对数. 分析:处理出每个数倍数的个数cnt[i],然后进行莫比乌斯反演,只不过这里的F(i)=cnt[i]*(cnt[i]-1)/2. #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <st