【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit:
2745  Solved: 1694
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am.
A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

Source

Solution

这个题非常的好

开始看范围,$10^{9}$显然O(n)都不能做啊,但是又像数位DP,所以肯定要优化,能优化到O(n)以下的只有矩乘快速幂优化DP了

实际上确实和数位DP非常累死,F[i][j]表示位数为i,最后匹配了j位的方案数,这样答案显然为$\sum_{i=1}^{n}F[n][i]$

考虑KMP的next数组,分类讨论一下,搞到矩阵上,然后快速幂一下搞搞

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,p,next[110],an; char S[110];
struct Matrixnode
{
    int da[30][30];
    Matrixnode(){memset(da,0,sizeof(da));}
}a;
Matrixnode Mul (Matrixnode A,Matrixnode B)
{
    Matrixnode C;
    for (int i=0; i<m; i++)
        for (int j=0; j<m; j++)
            for (int k=0; k<m; k++)
                C.da[i][j]=(C.da[i][j]+A.da[i][k]*B.da[k][j])%p;
    return C;
}
Matrixnode Pow (Matrixnode A,int x)
{
    Matrixnode re;
    for (int i=0; i<m; i++) re.da[i][i]=1;
    for (int i=x; i; i>>=1,A=Mul(A,A))
        if (i&1) re=Mul(re,A);
    return re;
}
void KMP_prework()
{
    for (int j=0,i=2; i<=m; i++)
        {
            while (j && S[i]!=S[j+1]) j=next[j];
            if (S[j+1]==S[i]) j++; next[i]=j;
        }
    for (int i=0; i<m; i++)
        for (int x,j=0; j<10; j++)
            {
                x=i;
                while (x && S[x+1]-‘0‘!=j) x=next[x];
                if (j==S[x+1]-‘0‘) a.da[i][x+1]++; else a.da[i][0]++;
            }
}
int main()
{
    scanf("%d%d%d\n",&n,&m,&p); scanf("%s",S+1);
    KMP_prework();
    Matrixnode ans; ans=Pow(a,n);
    for (int i=0; i<m; i++) an=(an+ans.da[0][i])%p;
    printf("%d\n",an);
    return 0;
}

Matrixnode写起来怎么那么长,搞的码风丑死啦

时间: 2024-11-05 07:57:32

【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂的相关文章

[BZOJ1009] [HNOI2008] GT考试 (KMP &amp; dp &amp; 矩阵乘法)

Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0 Input 第一行输入N,M,K.接下来一行输入M位的数. N<=10^9,M<=20,K<=1000 Output 阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的

【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)

2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种细胞最初的形态是"长条形",一端是头,一端是尾,中间是躯干.细胞内部含有一列密码(你可以认为它是这种细胞的DNA).密码是一个长度为n的数字串,且仅含有1~9这9种数字,沿着细胞的躯干从头到尾排列着. 首先,细胞会经历一次分裂.细胞将沿躯干方向分裂成若干个球体,躯干将退化成丝状物,连接着相

ZOJ - 3216:Compositions (DP&amp;矩阵乘法&amp;快速幂)

We consider problems concerning the number of ways in which a number can be written as a sum. If the order of the terms in the sum is taken into account the sum is called a composition and the number of compositions of n is denoted by c(n). Thus, the

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

题目大意:给定长度为m的数字串s,求不包含子串s的长度为n的数字串的数量 n<=10^9 光看这个O(n)就是挂 我们不考虑这个 令f[i][j]为长度为i的数字串中最后j位与s中的前j位匹配的方案数 比如当s为12312时 f[i][3]表示长度为i,以123结尾且不包含子串"12312"的方案数 a[x][y]为f[i-1][x]转移至f[i][y]的方案数 换句话说(可能描述不清楚) a[x][y]为s的长度为x的前缀加上一个数字后 后缀可以与最长长度为y的前缀匹配 这个数

BZOJ1009 HNOI2008 GT考试 一般DP+矩阵乘法+KMP

题意:给定一个长度为M的字符串A,求长度为N的字符串中,子串中不包含A的字符串的数量,其中字符串仅由‘0’-‘9’组成. 题解:设f[i][j]=长度为i最后几位能匹配A的前j个字符的字符串种数,那么每往后添加一个字符,能转移到的位置通过KMP的Next数组很轻松就能找到.那么我们就能构造出来一个矩阵,a[i][j]=1表示可以通过在A[i]后面加一个字符,使得A[1]-A[j]成为原有字符串的子串.快速幂优化后答案就是f[N][0]+……+f[N][M-1] #include <cstdio>

codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵...矩阵快速幂好理解但是细节还是有点小坑的.. 下面就是满满的槽点,,高能慎入!!! 对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另

矩阵乘法快速幂 cojs 1717. 数学序列

矩阵乘法模板: 1 #define N 801 2 #include<iostream> 3 using namespace std; 4 #include<cstdio> 5 int a[N][N],b[N][N],c[N][N]; 6 int n,m,p; 7 int read() 8 { 9 int ans=0,ff=1;char s; 10 s=getchar(); 11 while(s<'0'||s>'9') 12 { 13 if(s=='-') ff=-1;

矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“1250 Fibonacci数列”中,我们求出了第n个Fibonacci数列的值.但是1250中,n<=109.现在,你的任务仍然是求出第n个Fibonacci数列的值,但是注意:n为整数,且1 <= n <= 100000000000000 输入描述 Input Description 输入有多组数据,每