前言: 现在深度学习是一个潮流,同时,导师也给自己制定了深度学习的方向。在一次组会中,自己讲解了RNN的基本用法,和RNN数学原理的推导。以下是自己根据当时的PPT总结下来的东西。 时间: 2024-09-29 17:00:08
http://blog.csdn.net/a635661820/article/details/45390671 前段时间看了一些关于LSTM方面的论文,一直准备记录一下学习过程的,因为其他事儿,一直拖到了现在,记忆又快模糊了.现在赶紧补上,本文的组织安排是这样的:先介绍rnn的BPTT所存在的问题,然后介绍最初的LSTM结构,在介绍加了遗忘控制门的,然后是加了peephole connections结构的LSTM,都是按照真实提出的时间顺序来写的.本文相当于把各个论文核心部分简要汇集一下而做的
一.状态和模型 在CNN网络中的训练样本的数据为IID数据(独立同分布数据),所解决的问题也是分类问题或者回归问题或者是特征表达问题.但更多的数据是不满足IID的,如语言翻译,自动文本生成.它们是一个序列问题,包括时间序列和空间序列.这时就要用到RNN网络,RNN的结构图如下所示: 序列样本一般分为:一对多(生成图片描述),多对一(视频解说,文本归类),多对多(语言翻译).RNN不仅能够处理序列输入,也能够得到序列输出,这里的序列指的是向量的序列.RNN学习来的是一个程序,也可以说是一个状态机,
引言 前面已经介绍过RNN的基本结构,最基本的RNN在传统的BP神经网络上,增加了时序信息,也使得神经网络不再局限于固定维度的输入和输出这个束缚,但是从RNN的BPTT推导过程中,可以看到,传统RNN在求解梯度的过程中对long-term会产生梯度消失或者梯度爆炸的现象,这个在这篇文章中已经介绍了原因,对于此,在1997年 的Grave大作[1]中提出了新的新的RNN结构:Long Short Term Dependency.LSTM在传统RNN的基础上加了许多的"门",如input
网上有很多Simple RNN的BPTT算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$,每个时刻的值都是一个维数是词表大小的one-hot列向量: 标记序列 $\textbf y_{(1:T)} =(\textbf
http://www.cnblogs.com/YiXiaoZhou/p/6058890.html RNN求解过程推导与实现 RNN LSTM BPTT matlab code opencv code BPTT,Back Propagation Through Time. 首先来看看怎么处理RNN. RNN展开网络如下图 RNN展开结构.jpg RNN节点结构.jpg 现令第t时刻的输入表示为,隐层节点的输出为,输出层的预测值,输入到隐层的权重矩阵,隐层自循环的权重矩阵,隐层到输出层的权重矩阵,对
即使不是 NLPer,现实中依然会面对很多序列问题. 全文内容来自 Ian Goodfellow, Yoshua Bengio 和 Aaron Courville 3位大老爷的作品"Deep Learning"的其中1章"Sequence Modeling: Recurrent and Recursive Nets" 1. 1986年 Rumelhart 等人提出循环神经网络.循环网络与多层网络相比,会共享每层的权重,从而能够扩展和应用网络于不同长度的序列案例,以及
RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序列和语言文本序列问题有独特的优势.递归神经网络都具有一连串重复神经网络模块的形式.在标准的RNNs中,这种重复模块有一种非常简单的结构. 那么S(t+1) = tanh( U*X(t+1) + W*S(t)).tanh激活函数图像如下: 激活函数tanh把状态S值映射到-1和1之间. RNN通过BP
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好.同时,很多教程只讲是什么
循环神经?络是为更好地处理时序信息而设计的.它引?状态变量来存储过去的信息,并?其与当前的输?共同决定当前的输出.循环神经?络常?于处理序列数据,如?段?字或声?.购物或观影的顺序,甚?是图像中的??或?列像素.因此,循环神经?络有着极为?泛的实际应?,如语?模型.?本分类.机器翻译.语?识别.图像分析.?写识别和推荐系统. 1.引入 对于2句话,都有Taipei这个词,但是一个是目的地,一个是出发地 如果神经网络有记忆力,能够根据上下文对同样的input词汇产生不同的输出,我们就能解决这个问题