HH实习(hpu1287)(斐波那契运用)

HH实习

Time Limit: 1 Sec  Memory Limit:
128 MB

Submit: 44  Solved: 29

[Submit][Status][Web
Board
]

Description

这学期到了十五周了,HH突然要去实训中心实习了,想到要拿着钳子,锯子什么的,头就有点大了,因为它挺好玩的,但是,也是很累的,看着学弟坐在机房悠闲地敲着代码,HH学长决定要让他们好好忙忙,这道题就是为了你们而出的,学弟们,加油!问题很简单,只是需要动手就够了,要求是,给你n米长的钢筋,钢筋大家都知道吧?就是一根钢条,钢条大家都知道吧?不知道的回家问麻麻,目的很简单,让你自己动手把这一根很长的钢筋切成M段,保证他们中的任意三段都不能构成三角形,听起来会感觉乱乱的,其实我要的答案很简单,就是你能把这根钢筋截成多少条,条数要最多,还有就是长度不能少于1米。简单吧,大家抓紧时间AC吧。

Input

第一行输入一个T,接下来T行,每行有一个数N(4<=N<=1000000);

Output

输出占一行,对应每个N输出最多的条数M

Sample Input

2
7

Sample Output

4
10

HINT

Source

河南理工大学第五届ACM程序设计竞赛

#include<stdio.h>
int a[30],b[10000000];
int main()
{
    int i,n,test,sum=2;
    a[0]=1,a[1]=1;
    for(i=2;i<30;i++)
    {
        a[i]=a[i-1]+a[i-2];
        sum+=a[i];
        b[sum]=i+1;
    }
    scanf("%d",&test);
    while(test--)
    {
        scanf("%d",&n);
        while(b[n]==0)
        {
            n--;
        }
        printf("%d\n",b[n]);
    }
    return 0;
}
时间: 2024-10-13 19:22:13

HH实习(hpu1287)(斐波那契运用)的相关文章

[ZJOI2011]细胞——斐波那契数列+矩阵加速+dp

Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同). 所以先考虑第一次分裂后,一个固定小球体数量的情况: 2.第一次分裂后,最后的小球体数量固定.想要方案数不同,必须连接方式不同. 可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0 而fibo[n]-1

实现斐波那契神兔

1.用循环实现不死神兔 故事得从西元1202年说起,话说有一位意大利青年,名叫斐波那契. 在他的一部著作中提出了一个有趣的问题:假设一对刚出生的小兔一个月后就能长成大兔, 再过一个月就能生下一对小兔,并且此后每个月都生一对小兔,一年内没有发生死亡, 问:一对刚出生的兔子,一年内繁殖成多少对兔子? 1 1 2 3 5 8 13 21 1 import java.util.Arrays; 2 3 public class Tu { 4 5 public static void main(String

用递归和非递归的方法输出斐波那契数列的第n个元素(C语言实现)

费波那契数列(意大利语:Successione di Fibonacci),又译为费波拿契数.斐波那契数列.费氏数列.黄金分割数列. 在数学上,费波那契数列是以递归的方法来定义: {\displaystyle F_{0}=0} {\displaystyle F_{1}=1} {\displaystyle F_{n}=F_{n-1}+F_{n-2}}(n≧2) 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0, 1, 1, 2, 3

斐波纳契数之组合

斐波纳契数之组合 Time Limit: 1000 MS Memory Limit: 65535 K Total Submit: 145(66 users) Total Accepted: 83(65 users) Rating: Special Judge: No Description 斐波那契数列是这么定义的:F0 = 1, F1 = 1, F2 = F1 + F0,··· Fn = Fn-1 + Fn-2(n>=2),对于每一项,它们都是斐波那契数. 现在给出一个整数d,求一个组合使得a

NYOJ 698 A Coin Problem (斐波那契)

链接:click here 题意: 描述 One day,Jiameier is tidying up the room,and find some coins. Then she throws the coin to play.Suddenly,she thinks of a problem ,that if throw n times coin ,how many situations of no-continuous up of the coin. Hey,Let's solve the

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

求斐波那契数的python语言实现---递归和迭代

迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 = n2+n1 n1 = n2 n2 = n3 n-=1 return n3 number = int(input("请输入要求的斐波那契数的第几个数:")) result = fab(number) print(result) 递归实现如下: def fab(n): if n==1 o

OJ_1064.计算斐波那契第n项

1064. 计算斐波那契第n项 (Standard IO) 时间限制: 1000 ms  空间限制: 262144 KB 题目描述 输入n,编写程序输出斐波那契数列的第n项.其中斐波那契数列f(n)的定义如下: f(1)=0,f(2)=1         f(n)=f(n-1)+f(n-2)(n>=2) 输入 一行一个正整数n. 输出 输出一个数f(n). 样例输入 5 样例输出 3 数据范围限制 1<=n<=30 1 #include<cstdio> 2 #include&

《剑指Offer》题目——斐波拉契数列

题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.(n<=39) 题目分析:如果使用简单的递归,很容易造成栈溢出.采用递推的方式即可. 代码: public class Fibonacci { public static int fibonacci(int n){ int res[] = new int[2]; res[0]=1; res[1]=1; int temp = 0; if(n==0) return 0; if(n<=2) return res[

js算法集合(二) javascript实现斐波那契数列 (兔子数列) Javascript实现杨辉三角

js算法集合(二)  斐波那契数列.杨辉三角 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列和杨辉三角进行研究,来加深对Javascript的理解. 一.Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为