埃氏筛法(素数筛)

  1. 埃式筛法:给定一个正整数n(n<=10^6),问n以内有多少个素数?

做法:做法其实很简单,首先将2到n范围内的整数写下来,其中2是最小的素数。将表中所有的2的倍数划去,表中剩下的最小的数字就是3,他不能被更小的数整除,所以3是素数。再将表中所有的3的倍数划去……以此类推,如果表中剩余的最小的数是m,那么m就是素数。然后将表中所有m的倍数划去,像这样反复操作,就能依次枚举n以内的素数,这样的时间复杂度是O(nloglogn)。

题解:如果要是按照一个一个判断是否是素数然后把ans+1,时间复杂度为O(n√n),对于10^6的数据时间复杂度就是O(10^9),必定会超时,但此时埃氏筛法的时间复杂度只有O(nloglogn)。

int prime[MAXN];//第i个素数
bool is_pri[MAXN+10];//is_pri[i]表示i是素数
//返回n以内素数的个数
int sieve(int n){
int p=0;
for(int i=0;i<=n;i++)is_pri[i]=true;
is_pri[0]=is_pri[1]=false;
for(int i=2;i<=n;i++){
    if(is_pri[i]){
prime[++p]=i;
        for(int j=2*i;j<=n;j+=i)is_pri[j]=false;
}
}
return p;
}
  1. 区间素数筛:给定两个正整数a、b(a<b<=10^12、b-a<=10^6),请问[a,b)内有多少个素数?

    主要思想:既然在之前已经讲过b以内的和书的最小质因数不会超过√b。如果有√b以内的素数表的话,就可以把埃氏筛法运用在上面了。也就是说,我们可以先分别做好[2,√b)的表和[a,b)然后在第一个表的是素数的前提下,删去第二个表中的数即可。

    #include<iostream>
    using namespace std;
    bool pri[1000000+10];
    bool ispri[10000000+10];//ispri[i-a]=true代表i是素数
    
    void getpri(){
        memset(pri,true,sizeof(pri));
        pri[0]=pri[1]=0;
        for(int i=2;i<=1000000;i++){
            if(pri[i]){
                for(int j=2*i;j<=1000000;j+=i)pri[j]=0;
            }
        }
    }
    
    int main(){
        long long a,b;
        scanf("%lld%lld",&a,&b);
        getpri();
        memset(ispri,true,sizeof(ispri));
        for(long long i=2;i*i<b;i++){
            if(pri[i]){
                for(long long j=max((a+i-1)/i,2LL)*i;j<b;j+=i)
                    ispri[j-a]=0;
            }
        }
        long long cnt=0;
        for(int i=0;i<b-a;i++)if(ispri[i])cnt++;
        if(a==1)cnt--;
        printf("%lld\n",cnt);
    }
时间: 2024-12-18 15:22:40

埃氏筛法(素数筛)的相关文章

素数的快速筛选(埃氏筛法)

要枚举n以内的素数,可以用埃氏筛法.这是一个与辗转相除法一样古老的算法. 首先,将2到n范围内的所有整数写下来.其中最小的数字2是素数.将表中所有2的倍数都划去.表中剩余的最小数字是3,它不能被更小的数整除,所以是素数.再将表中所有3的倍数全都划去.依次类推,如果表中剩余的最小数字是m时,m就是素数.然后将表中所有m的倍数全部划去.像这样反复操作,就能依次枚举n以内的素数. int prime[maxn];//第i个素数 bool is_prime[maxn];//is_prime[i]为tru

分拆素数和 埃氏筛法

分拆素数和 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2098 Description 把一个偶数拆成两个不同素数的和,有几种拆法呢? Input 输入包含一些正的偶数,其值不会超过10000,个数不会超过500,若遇0,则结束. Output 对应每个偶数,输出其拆成不同素数的个数,每个结果占一行. Sample Input 30

埃氏筛法之素数

原理: 首先将2~n个数记录下来,2作为最小素数,所以2的倍数不是素数,从记录中划去,扫一遍之后,将3作为最小素数,3的倍数划去,如此下去,求出所有素数.如表格所示: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 - 5 - 7 - 9 - 11 - 13 - 15 - 17 - 19 - 2 3 - 5 - 7 - - - 11 - 13 - - - 17 - 19 - 代码: 判断是否是素数: bool is_prime(int n

素数的计算-埃氏筛法(区间素数利器)

素数,各种素数,各种题总是遇到素数. 下面我们来说一下求素数的一种比较有效的算法. 就是筛法.因为这个要求得1-n区间的素数只需要O(nloglogn)的时间复杂度. 下面来说一下它的思路. 思路:现在又1-n的数字,素数嘛就是除了1和本身之外没有其他的约数,所以有约数的都不是素数. 我们从2开始往后遍历,是2的倍数的都不是素数,所以我们把他们划掉 然后现在从2往后就是3了 因为3的前面没有能整除3的,所以3是素数,然后3的倍数全都不是素数,我们接着划掉. 然后就是5了,因为4是2的倍数不是素数

埃氏筛法

埃氏筛法,理解起来很好理解,就是在1~n这n个连续的数里面开始筛出合数,知道剩下全部为素数,大致流程如下: 第一步:能够确定1不是素数,所以将1筛出,剩下从2开始的数列 第二步:找到2为第一个素数,那么遍历这个数列,将2的倍数筛出,形成一个新的数列 第三步:找到下一个素数 x,此时 x = 3,那么再次遍历这个数列,筛出 x 的倍数,剩下的数再次形成一个新的数列 第四步:重复第三步,直到将所有合数筛出 代码如下: #include <iostream> #include <cstring

埃氏筛选 - 素数的个数

#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> using namespace std; const int maxn = 1000000 + 200; int prime[maxn]; //第i个素数 bool is_prime[maxn + 1]; //is_prime[i]位true, 表示i是素数 void solve(); int sieve

埃氏筛法的一般写法

问题: 求[L, R]之间的素数表 解法: 先用埃氏筛法求出[1...sqrt(R)]上的素数表 再在[L, R]上用埃氏筛法求素数 const int N(1e5); bool isprime[N]; int prime[N]; void init(){ memset(isprime, -1, sizeof(isprime)); isprime[0]=isprime[1]=0; int np=0; for(int i=0; i<N; i++){ if(isprime[i]){ prime[np

DP+埃氏筛法 Codeforces Round #304 (Div. 2) D. Soldier and Number Game

题目传送门 1 /* 2 题意:b+1,b+2,...,a 所有数的素数个数和 3 DP+埃氏筛法:dp[i] 记录i的素数个数和,若i是素数,则为1:否则它可以从一个数乘以素数递推过来 4 最后改为i之前所有素数个数和,那么ans = dp[a] - dp[b]: 5 详细解释:http://blog.csdn.net/catglory/article/details/45932593 6 */ 7 #include <cstdio> 8 #include <algorithm>

埃氏筛法&amp;欧拉筛法

埃氏筛法 /* |埃式筛法| |快速筛选素数| |15-7-26| */ #include <iostream> #include <cstdio> using namespace std; const int SIZE = 1e7; int prime[SIZE]; // 第i个素数 bool is_prime[SIZE]; //true表示i是素数 int slove(int n) { int p = 0; for(int i = 0; i <= n; i++) is_p