进程的切换和系统的一般执行过程

1 进程切换的关键代码switch_to分析

1.1 进程调度与进程调度的时机分析

1.1.1 进程的分类

第一种分类:

I/O-bound:频繁的进行I/O,通常会花费很多时间等待I/O操作的完成。

CPU-bound:计算密集型,需要大量的CPU时间进行计算。

第二种分类:

批处理进程(batch process):不必和用户交互,通常在后台进行;不必很快的响应;典型例子:编译程序、科学计算

实时进程(real-time process):有实时要求、不应被优先级低的进程阻塞;响应时间短、要稳定;典型例子:视频/音频、机械控制

交互式进程(interactive process):需要和用户交互,因此要花很多时间等待用户操作;响应时间快;典型例子:shell、文本编辑器、图形应用程序。

1.1.2 进程调度的时机

中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();

内核线程(只有内核态没有用户态的特殊进程)可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;

用户态进程无法实现主动调度(只能被动调度),仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。

1.2 进程上下文切换相关代码分析

为了控制进程的执行,内核必须有能力挂起正在CPU上执行的进程,并恢复以前挂起的某个进程的执行,这叫做进程切换、任务切换、上下文切换。

挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行;进程上下文切换时两个进程在切换。

进程上下文包含了进程执行需要的所有信息

  • 用户地址空间: 包括程序代码,数据,用户堆栈等
  • 控制信息 :进程描述符,内核堆栈等
  • 硬件上下文(注意中断也要保存硬件上下文只是保存的方法不同)

schedule()函数选择一个新的进程来运行,并调用context_switch进行上下文的切换,这个宏调用switch_to来进行关键上下文切换。

  • next = pick_next_task(rq, prev);            //进程调度算法都封装这个函数内部
  • context_switch(rq, prev, next);              //进程上下文切换
  • switch_to利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程
#define switch_to(prev, next, last)                    do {                                        /*                                     * Context-switching clobbers all registers, so we clobber         * them explicitly, via unused output variables.             * (EAX and EBP is not listed because EBP is saved/restored         * explicitly for wchan access and EAX is the return value of         * __switch_to())                             */                                    unsigned long ebx, ecx, edx, esi, edi;                                                        asm volatile("pushfl\n\t"        /* save    flags */                 "pushl %%ebp\n\t"        /* save    EBP   */                 "movl %%esp,%[prev_sp]\n\t"    /* save    ESP   */              "movl %[next_sp],%%esp\n\t"    /* restore ESP   */              "movl $1f,%[prev_ip]\n\t"    /* save    EIP   */                 "pushl %[next_ip]\n\t"    /* restore EIP   */                 __switch_canary                                 "jmp __switch_to\n"    /* regparm call  */                 "1:\t"                                     "popl %%ebp\n\t"        /* restore EBP   */                 "popfl\n"            /* restore flags */                                                     /* output parameters */                             //thread.sp内核堆栈的栈底
             : [prev_sp] "=m" (prev->thread.sp),                     //thread.ip进程的eip
               [prev_ip] "=m" (prev->thread.ip),                       "=a" (last),                                                                       /* clobbered output registers: */                       "=b" (ebx), "=c" (ecx), "=d" (edx),                       "=S" (esi), "=D" (edi)                                                                          __switch_canary_oparam                                                                   /* input parameters: */                               //next->thread.sp下一个进程的内核堆栈的栈底
             : [next_sp]  "m" (next->thread.sp),                       //next->thread.ip下一个进程执行的起点
               [next_ip]  "m" (next->thread.ip),                                                                  /* regparm parameters for __switch_to(): */                   [prev]     "a" (prev),                               [next]     "d" (next)                                                                   __switch_canary_iparam                                                                 : /* reloaded segment registers */                        "memory");                    } while (0)

2 linux系统的一般执行过程

2.1一般的情况

正在运行的用户态进程X切换到运行用户态进程Y的过程

  • 正在运行的用户态进程X
  • 发生中断——save cs:eip/esp/eflags(current) to kernel stack,then load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack).    //保存和加载有CPU自动完成
  • SAVE_ALL             //进入内核代码,首先保存现场
  • 中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换
  • 标号1之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行)
  • restore_all               //恢复现场
  • iret - pop cs:eip/ss:esp/eflags from kernel stack
  • 继续运行用户态进程Y

2.2 几个特殊过程

  • 通过中断处理过程中的调度时机,用户态进程与内核线程之间互相切换和内核线程之间互相切换,与最一般的情况非常类似,只是内核线程运行过程中发生中断没有进程用户态和内核态的转换
  • 内核线程主动调用schedule(),只有进程上下文的切换,没有发生中断上下文的切换,与最一般的情况略简略;
  • 创建子进程的系统调用在子进程中的执行起点及返回用户态,如fork;
  • 加载一个新的可执行程序后返回到用户态的情况,如execve;

内核是各种中断处理过程和内核线程的集合,内核态的部分共享,是一样的。

3 linux系统架构和执行过程概览

3.1 linux系统架构概览

典型的linux架构

3.2 分析ls命令

4 从CPU和内存看Linux系统的执行

4.1 CPU角度

main函数中有个gets()以获取字符串,执行gets这个系统调用会陷入到内核态,在等待键盘输入的过程,CPU会调度到其他进程,同时,在执行其他进程的过程中,会等待输入。当在键盘上敲击字符时,会产生IO中断给CPU,CPU进行中断处理,在中断处理过程中,接受了一个键盘输入,进而判断是X进程在等待键盘输入。开始时,x进程执行到gets陷入到内核态时,若没有键盘输入会进入阻塞态,有了键盘输入后,会把X进程设为就绪态,进程管理切换到进程X,gets系统调用获得了读入的数据,返回到用户态,继续执行下一条指令。

4.2 从内存角度

 

时间: 2024-08-08 09:40:26

进程的切换和系统的一般执行过程的相关文章

Linux内核设计第八周 ——进程的切换和系统的一般执行过程

Linux内核设计第八周 ——进程的切换和系统的一般执行过程 第一部分 知识点总结

第八节 进程的切换和系统的一般执行过程

第八周 进程的切换和系统的一般执行过程 By 135217孙小博 本周的主要内容: Linux中进程调度的基本概念与相关知识 schedule函数如何实现进程调度 Linux进程的执行过程(一般情况与特殊情况) 宏观描述Linux系统执行 进程切换的主要代码switch_to 进程的调度时机与进程的切换 不同类型进程的不同调度需求 第一种分类: I/O-bound:频繁进行I/O,并且需要花费很多时间等待I/O完成 CPU-bound:计算密集,需要大量的CPU时间进行运算 第二种分类: 批处理

《Linux内核分析》第八周学习小结 进程的切换和系统的一般执行过程

进程的切换和系统的一般执行过程 一.进程调度的三个时机: 1.中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule(): 2.内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度: 3.用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度. 二.swi

实验八 进程的切换和系统的一般执行过程

实验八 进程的切换和系统的一般执行过程 20135114王朝宪 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.进程切换的关键代码switch_to分析 1.1 进程调度与进程调度的时机分析 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已. 对于理解操作系统的工作机制,反而是进程的调度时机与进程的切换机制

LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程

LINUX内核分析第八周学习总结——进程的切换和系统的一般执行过程 黄韧(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.知识概要 Linux中进程调度的基本概念与相关知识 schedule函数如何实现进程调度 Linux进程的执行过程(一般情况与特殊情况) 宏观描述Linux系统执行 二.学习笔记 (一)进程切换的关键代码switch_to分析 进程进度与进程调度的时机分析 1.

《Linux内核》第七周 进程的切换和系统的一般执行过程 20135311傅冬菁

进程的切换和系统的一般执行过程 一.内容总结与分析 进程调度与进程调度时机 进程调度需求的分类: 第一种分类方式: I/O -bound(频繁进行I/O,通常会花很多时间等待I/O操作) CPU-bound(计算密集型.需要花大量CPU时间进行运算) 第二种分类方式: 批处理进程(后台进行,典型:编译程序.科学计算) 实时进程(有实时需求响应时间短.稳,典型:视频.音频.机械控制) 交互式进程(与用户交互多,响应时间要快,典型:shell.文本编辑程序.图形应用程序) Linux调度基于分时和优

Linux内核分析——进程的切换和系统的一般执行过程

进程的切换和系统的一般执行过程 一.进程切换的关键代码switch_to分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: (1)I/O-bound:频繁进行I/O,花费很多时间等待I/O操作的完成. (2)CPU-bound:计算密集型,需要大量CPU时间进行计算. 第二种分类: (1)批处理进程:不必交互.很快响应. (2)实时进程:要求响应时间短. (3)交互式进程(shell). 2.调度策略:是一组规则,它们决定什么时候以怎样的方式选择一个新进程

20135239 益西拉姆 linux内核分析 进程的切换和系统的一般执行过程

week 8 进程的切换和系统的一般执行过程 [ 20135239 原文请转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] 一.进程调度与进程调度的时机分析 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已.对于理解操作系统的工作机制,反而是进程的调度时机与进程的切换机制更为关键. 不同类型的进程有不同的调度需求 第一

第八周:进程的切换和系统的一般执行过程

吕松鸿 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.进程切换的关键代码switch_to分析 1.进程调度与进程调度的时机分析 不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁进行I/O,花费很长时间等待I/O CPU-bound:计算密集型,需要大量CPU时间进行计算 第二种分类: 批处理进程:不必交互.很快响应 实时进程:要求响应时间短 交互式进

《Linux内核分析》 第八节 进程的切换和系统的一般执行过程

一.进程切换的关键代码switch_to分析 1.进程进度与进程调度的时机分析 中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule(): 内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度: 用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度.