Mathematical operation

(1)Using let     let result=2+1  let result=2-1  let result=2*1  let result=2/1(2) Using bracket    echo $(($p1+$p2))    OR  sum=$(($p1+$p2))       echo $sum(3) Using ` and expr  1.乘号(*), 左括号( ( ) , 右括号( ) )必须使用反斜杠(\)转义。  2.expr右边以及运算符和括号的两边必须有空格  result=`expr 4 + 2`  result=`expr 4 - 2`  result=`expr 4 \* 2`  result=`expr 4 / 2`  result=`expr 4 % 2`  result=`expr \( 4 - 2 \) \* 2` (注意两项的综合运用)
时间: 2024-10-06 23:19:06

Mathematical operation的相关文章

[转载] Conv Nets: A Modular Perspective

原文地址:http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ Conv Nets: A Modular Perspective Posted on July 8, 2014 neural networks, deep learning, convolutional neural networks, modular neural networks Introduction In the last few years, deep neura

(转) Deep Learning in a Nutshell: Core Concepts

Deep Learning in a Nutshell: Core Concepts Share: Posted on November 3, 2015by Tim Dettmers 7 CommentsTagged cuDNN, Deep Learning, Deep Neural Networks, Machine Learning,Neural Networks This post is the first in a series I’ll be writing for Parallel

Understanding Convolution in Deep Learning

Understanding Convolution in Deep Learning Convolution is probably the most important concept in deep learning right now. It was convolution and convolutional nets that catapulted deep learning to the forefront of almost any machine learning task the

我们为什么用卷积? Why should we use convolution?

Why should we use convolution? 问题限定: 仅对离散信号做分析 首先要回答什么是卷积的问题. In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g, producing a third function that is typically viewed as a modified

linux shell program summary

from:Sep 23 2016 mathematical operation: floating number,bc calculator: we can also use bc in shell scripts: if - then - else number comparison: n1 -eq n2 n1 -ge n2 n1 -gt n2 n1 -le n2 n1 -lt n2 n1 -ne n2 if - then - elif, notice that the second elif

算法中O字符解释

出处:stackoverflow 伯乐在线有同志翻译了一下:http://blog.jobbole.com/55184/ Big O complexity can be visualized with this graph: The simplest definition I can give for Big-O notation is this: Big-O notation is a relative representation of the complexity of an algori

dda的fpga实现(转载)

The general approach using DDAs will be to simulate a system of first-order differential equations, which can be nonlinear. Analog computers use operational amplifiers to do mathematical integration. We will use digital summers and registers. For any

【codewar】

##题目描述 Function composition is a mathematical operation that mainly presents itself in lambda calculus and computability. It is explained well here, but this is my explanation, in simple mathematical notation: f3 = compose( f1 f2 ) Is equivalent to..

CRC 详解

http://www.barrgroup.com/Embedded-Systems/How-To/Additive-Checksums CRC Series, Part 1: Additive Checksums Sat, 2007-12-01 23:21 - webmaster by Michael Barr Whenever you connect two or more computers together with the intent of exchanging information