《University Calculus》-chaper13-多重积分-二重积分的引入

这一章节我们开始对多重积分的研究。

在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f(x),对f(x)求解一次定积分即可。其方法就是先微分(将自变量区间划分为n个区间段),引入极限的概念(即使得n趋向无穷)之后使得我们能够“化曲为直”,然后利用矩形的面积公式进行求解。随后是积分过程,将这n个小矩形相加求极限,可得曲边梯形的面积。

如下几图使得这个过程更加的直观.

Sp又叫做,f(x)在[a,b]上的黎曼和。

关于黎曼和,这里简单的插一句,关于积分的定义在牛顿时代就已经给出了,但是它现代数学的的定义是后来黎曼给出的。关于黎曼和,存在着很多形式。

由于积分和微分是逆运算,由此根据导数的定义可给出积分符号∫。

那么我们把一开始求曲边梯形的面积推广到空间,对于带曲面的不规则几何体,我们如何求解其体积呢?

像这个图一样。(其顶部是一个曲面,底面在x-O-y面上)

类比处理曲边梯形面积的思想,这里我们建立三维坐标系,用二元函数z = f(x,y)来表征最上面的曲面,我们从它的底面分析,考虑“化曲为直”将其往长方体上靠拢。

我们将底面的矩形用一些平行于x、y的直线,将其划分成n个小矩形,并标号。记第i个矩形的长为△xi,宽为△yi,第i个小矩形的面积是△Ai=△xi△yi。

容易看到,我们可以近似的将不规则几何体看成由n个长方体组成,那么会得到如下的黎曼和的形式:

而很容易看到,随着n趋于无穷,约等式右边的和式将无限的接近V。

如下图所示。

因此我们得到:

可以看到,这里我们有两个维度的微小圆,因此我们要在两个维度上进行积分,因此我们采用如下的表述方式:

时间: 2024-10-13 01:35:44

《University Calculus》-chaper13-多重积分-二重积分的引入的相关文章

《University Calculus》-chaper13-多重积分-三重积分的引入

承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲面D包裹的空间D’,我们如何求其体积呢? 我们很自然的能够想到,从x.y.z三个维度作平行线,然后把D’分割成了n个小长方体,如下图. 伴随着n趋于无穷,我们可以完美的得到D’区域的体积. 个人认为,这个例子仅仅是为了自然的引出三重积分的概念和形式,在实际应用中,很难通过这个方法来计算各种各样不规则

《University Calculus》-chape5-积分法-积分的定义

这一章节讨论积分的定义以及微积分基本定理. 笔者先前在数学证明专栏中关于高斯定理的证明的开头,给出了一段关于微积分思想的概括,文中提到根据导数(微分)的定义,根据其逆定义来给出积分的定义和计算方法,这里其实是及其不严谨的,积分本身有着自己的定义,而其计算方法正是微积分基本定理所呈现出来的东西. 积分的定义: 积分的现代定义的本质就是黎曼和,笔者之前关于多重积分定义的引入其实就已经提到过,这里是对一维的积分进行定义,相对二重.三重积分则会简单很多. 理论总是源于实际问题嘛,在解决曲线和坐标系围成的

《University Calculus》-chaper13-多重积分-二重积分的计算

之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在<概率论基础教程>中一系列的推导中发挥着很重要的作用. 回想先前关于二重积分的几何含义,求解一个曲顶圆柱的体积,我们用如下的符号进行定义: 现在我们通过另外一条路径,再次得到几何体的体积,便可以建立等式,那么对于一般的二重积分,我们就找到了计算方法. 看这样一个图: 落在x-O-y上的面积就是被积区域D,几何体的顶部z=f(x,y)就是被积函数,为了求解这个几何体的体积,我们采取先求侧面

《University Calculus》-chape12-偏导数-基本概念

偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等值曲线): 一元函数的定义域在x轴上,函数图像在xoy面上:二元函数的定义域在xoy面上,函数图像在空间当中,而三元函数的定义域对应着空间的集合体.这里面对二元.三元函数我们有一个最基本的问题,就是勾勒出它们的大致图像,虽然目前有数学软件可以较为快速准确的描绘出函数的图像,但是掌握一定的确定函数图像

《University Calculus》-chaper13-向量场中的积分-线积分

线积分: 基于二重积分和三重积分的引入,我们对于线积分的引入过程将会轻车熟路. 对于一根不均匀密度的铜丝,我们如何求其总质量?如下图. 类似二重积分和三重积分的引入,我们首先基于实际问题给出黎曼和的形式,然后规定出积分符号,然后抽象出模型,然后再讨论如何正确的计算. 这里我们将这段曲线分割成n个区间段,可以近似求解质量,而随着n趋向无穷,这种近似的取法最终将逼近准确答案,则有如下的黎曼和形式(这里建立三维坐标系,f(x,y,z)是记录铜导线(x,y,z)点的密度的函数): 写成积分形式为: 其表

《University Calculus》-chape5-积分法-微积分基本定理

定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉了我们积分的计算方法. 微积分基本定理: 能够看到,正是基于这样一个基本定理,我们才能够找到积分的计算方法,从这个角度就可以充分的理解为什么求积分的过程实际上是一个求“反导数”(求导的逆运算)的过程了.

《University Calculus》-chape10-向量和空间几何学-叉积

叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核心,计算机做的是数值运算,因此你需要做的就是把几何关系用代数关系表达出来.而在空间中,为了表示一个平面相对空间直角坐标系的倾斜程度,我们利用一个垂直该平面的法向量来度量(因为这转化成了描述直线倾斜程度的问题). 叉积的定义: 注意这里的θ是根据右手法则和叉乘的顺序确定的,是具有一定的方向性,这种定义

《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运算,他们老师由于不想说话就向我们扔了一个自然对数e! 其实很多人觉得数学抽象.晦涩而且无章可循,其实这都是假想,如果真的有这种感觉,很大程度上是教科书在编排顺序上有瑕疵.数学本身是语言,描述自然的语言,因此在每个概念.公式的背后,往往都需要(或者说必然)对应着现实模型,因此在学习新的概念的时候,考察它的现实意

《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.