poj1006---中国剩余定理

#include<iostream>
using namespace std;

int main(){
    int p,e,i,d,count=0;
    while(cin>>p>>e>>i>>d,p!=-1&&e!=-1&&i!=-1&&d!=-1){
        count++;
        int n=(1288*i+14421*e+5544*p-d+21252)%21252;
        if(n==0)
        cout<<"Case "<<count<<": the next triple peak occurs in "<<"21252"<<" days."<<endl;
        else
        cout<<"Case "<<count<<": the next triple peak occurs in "<<n<<" days."<<endl;
    }
    return 0;
}

中国剩余定理的应用(运用的要求是n%m=r,其中m必须两两互质)

下面我们来看一个例子:

韩信点兵问题:已知n%3=2,n%5=3,n%7=2,求n.

设x=n%3,y=n%5,z=n%7且3,5,7互质。

使5×7×a(5,7为3之外的剩余两个数)被3除余1,有35×2=70,即a=2;  使3×7×b(3,7为5之外的剩余两个数)被5除余1,用21×1=21,即b=1;  使3×5×c(5,3为7之外的剩余两个数)被7除余1,用15×1=15,即c=1。

(其中的,为什么要余1,我们需上百度查阅中国剩余定理的证明)

那么n =(70×x+21×y+15×z)%lcm(3,5,7) = 23 这是n的最小解

而韩信已知士兵人数在2300~2400之间,所以只需要n+i×lcm(3,5,7)就得到了2333,此时i=22

同理我们便可解这个问题,

已知(n+d)%23=p;   (n+d)%28=e;   (n+d)%33=i

使33×28×a被23除余1,用33×28×8=5544;

使23×33×b被28除余1,用23×33×19=14421;

使23×28×c被33除余1,用23×28×2=1288。

因此有(5544×p+14421×e+1288×i)% lcm(23,28,33) =n+d

又23、28、33互质,即lcm(23,28,33)= 21252;

所以有n=(5544×p+14421×e+1288×i-d)%21252

本题所求的是最小整数解,避免n为负,因此最后结果为n= [n+21252]% 21252 那么最终求解n的表达式就是:

n=(5544*p+14421*e+1288*i-d+21252)%21252;

问题得解;

时间: 2024-10-09 04:39:29

poj1006---中国剩余定理的相关文章

转载----POJ 1006 中国剩余定理

本文为转载,源地址:   http://blog.csdn.net/dongfengkuayue/article/details/6461298 POJ 1006   Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78980   Accepted: 23740 Description Some people believe that there are three cycles in a perso

数论E - Biorhythms(中国剩余定理,一水)

E - Biorhythms Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the

gcd,扩展欧几里得,中国剩余定理

1.gcd: int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: 1 10 2 3 1 2 3 2 3 5 8 1 2 3 4 5 6 7 8 97 89 67 61 59 53 47 88 12 1 2 3 4 5 6 7 8 9

HDU 1573 X问题 中国剩余定理

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题意:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i], - (0 < a[i] <= 10). 思路:中国剩余定理的模板题,如果找不到这样的数或者最小的X大于N,输出零. 代码: #include <iostream> #include

同余 模算术 中国剩余定理

相关知识点: 1.a≡b(modc),a,b关于模c同余  ,即a modc=b mod c , 等价于a%c=b 2.如果a,b互质(a,b)=1,则可得a关于模b的逆 ax≡1(modb) 3.关于余数的定理: 定理1 :如果被除数加上(或减去)除数的整数倍,除数不变,则余数不变. 定理2 :如果被除数扩大(或缩小)几倍,除数不变,则余数也扩大(或缩小)同样的倍数. 定理3: 如果整数a除以自然数b(b≠0),余数r仍不小于b,则r除以b的余数等于a除以b所得余数.(余数和被除数关于除数同余

hihocode 九十七周 中国剩余定理

题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四百余人.韩信为了清点人数让士兵站成三人一排,多出来两人:站成五人一排,多出来四人:站成七人一排,多出来六人.韩信立刻就知道了剩余人数为1049人. 小Hi:韩信点兵嘛,这个故事很有名的. 小Ho:我觉得这里面一定有什么巧妙的计算方法!不然韩信不可能这么快计

POJ 1006 中国剩余定理

[题意]: 给定p,e,i,d,求解 (x + d) % 23 = p (x + d) % 28 = e(x + d) % 33 = i x最小正整数值 [知识点]: 中国剩余定理 [题解]: 典型的 xmodmi = ai模型,其中mi间两两互素.但该题式子较少,也可以直接自己化简带入值. [代码]: 1 #include <map> 2 #include <set> 3 #include <cmath> 4 #include <ctime> 5 #inc

【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理

题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一

Chinese remainder theorem 中国剩余定理

中国剩余定理: x ≡ a1 (% m1) x ≡ a2 (% m2) . . . x ≡ an (% mn) m1,m2...mn 互质.我们求里面的x,就会用到中国剩余定理.首先将 x 看成 s ,则 s ≡ a1 (% m1) 1式 s + m1 * y = a1 另 M = m1 * m2 * m3 * m4 * ... * mn Mi = M / mi 因为 m1,m2...mn 互质所以 (Mi, mi) = 1 所以 可以表示成 Mi * x + mi * y = 1 2式 所以

同余、中国剩余定理

同余:a≡b (mod m),表示a % m==b % m 同余式的运算法则: -------------------------------------------------------------------------------------------------------------- 中国剩余定理出自<孙子算经>中的一个问题: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?这道题实际上就是解这么一个同余方程组:x≡2 (mod 3)x≡3 (mod 5)x≡