Supervised Learning 的本质

转载自知乎:http://www.zhihu.com/question/23194489

 

但根据知乎惯例,答案还是要继续扩展的。
首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考的题目)?
最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类,输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是找到特征和标签间的关系(mapping)。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。
在上述的分类过程中,如果所有训练数据都有标签,则为有监督学习(supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。
(但有监督学习并非全是分类,还有回归(regression),此处不细说。(哇擦,贵圈太乱,逼着我用了这么多括号))
目前分类算法的效果普遍还是不错的(研究者们每天都在outperform其他人……),相对来讲,聚类算法就有些惨不忍睹了。(聚类:这不是我的错嘤嘤嘤嘤└(T_T;)┘)确实,无监督学习本身的特点使其难以得到如分类一样近乎完美的结果。这也正如我们在高中做题,答案(标签)是非常重要的,假设两个完全相同的人进入高中,一个正常学习,另一人做的所有题目都没有答案,那么想必第一个人高考会发挥更好,第二个人会发疯。
这时各位可能要问,既然分类如此之好,聚类如此之不靠谱(分类<( ̄︶ ̄)/,聚类└(T_T;)┘),那为何我们还可以容忍聚类的存在?因为在实际应用中,标签的获取常常需要极大的人工工作量,有时甚至非常困难。例如在自然语言处理(NLP)中,Penn Chinese Treebank在2年里只完成了4000句话的标签……

这时有人可能会想,难道有监督学习和无监督学习就是非黑即白的关系吗?有没有灰呢?Good idea。灰是存在的。二者的中间带就是半监督学习(semi-supervised learning)。对于半监督学习,其训练数据的一部分是有标签的,另一部分没有标签,而没标签数据的数量常常极大于有标签数据数量(这也是符合现实情况的)。隐藏在半监督学习下的基本规律在于:数据的分布必然不是完全随机的,通过一些有标签数据的局部特征,以及更多没标签数据的整体分布,就可以得到可以接受甚至是非常好的分类结果。(此处大量忽略细节( ̄ε ̄;))
因此,learning家族的整体构造是这样的:
有监督学习(分类,回归)
?
半监督学习(分类,回归),transductive learning(不懂怎么翻译,直推式学习?)(分类,回归)
?
半监督聚类(有标签数据的标签不是确定的,类似于:肯定不是xxx,很可能是yyy)
?
无监督学习(聚类)
参考文献:
[1] 各种教材
[2] Semi-Supervised Learning Tutorial, http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf?

时间: 2024-10-06 16:34:57

Supervised Learning 的本质的相关文章

Machine Learning Algorithms Study Notes(2)--Supervised Learning

Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA -- "知错能改"演算法    4 2.2    Linear Regression    6 2.2.1    线性回归模型    6 2.2.2    最小二乘法( le

1. Supervised Learning - Linear Regression

Linear Regression线性回归 Notation 给定一个样本集T 样本总数为m 每个样本记做 其中为输入变量,也称为特征变量:为我们要预测的输出变量,也称为目标变量 表示第个样本. 问题描述 给定一个样本集,学习一个函数 使得是对相应y的一个好的预测. 因为某些历史原因,h被称为假设(hypothesis). 整个过程如下图所示: 如果我们想要预测的目标变量是连续值,称为回归问题(regression): 当目标变量是少数离散值时,称为分类问题(classification). 如

(转载)[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation

[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854

【转载】Torch7 教程 Supervised Learning CNN

Torch7 教程 Supervised Learning CNN 分类:             机器学习              2014-08-08 15:59     1426人阅读     评论(0)     收藏     举报 cnnbpdeep learning 全部代码放在:https://github.com/guoyilin/CNN_Torch7 在搭建好Torch7之后,我们开始进行监督式Supervised Learning for CNN, Torch7提供了代码和一

2. Supervised Learning - Logistic Regression

Logistic Regression 逻辑回归解决问题类型 二分类问题(classification) Notation 给定一个样本集T 样本总数为m 每个样本记做 其中为输入变量,也称为特征变量:为我们要预测的输出变量,也称为目标变量 表示第个样本. Hypothesis的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1的可能性 也就是 最终,当大于等于0.5时,预测y=1,当小于0.5时,预测y=0 假设是一下形式: 其中称为Logistic函数或者sigmoid函数,函数图象

A Brief Review of Supervised Learning

There are a number of algorithms that are typically used for system identification, adaptive control, adaptive signal processing, and machine learning. These algorithms all have particular similarities and differences. However, they all need to proce

Stanford机器学习课程笔记(1) Supervised Learning and Unsupervised Learning

最近跟完了Andrew Ng的Machine Learning前三周的课,主要讲解了机器学习中的线性回归(Linear Regression)和逻辑回归(Logistic Regression)模型.在这里做一下记录. 另外推荐一本统计学习的书,<统计学习方法>李航,书短小精悍,才200多页,但是内容基本上覆盖了机器学习中的理论基础. 笔记<1> 主要了解一下监督学习和无监督学习 机器学习:是关于计算机基于数据 构建概率统计模型 并运用模型对数据进行预测与分析的一门学科. 机器学习

CS 229 notes Supervised Learning

CS 229 notes Supervised Learning 标签(空格分隔): 监督学习 线性代数 Forword the proof of Normal equation and, before that, some linear algebra equations, which will be used in the proof. The normal equation Linear algebra preparation For two matrices and such that

CSE 6363 - Machine Learning Homework MLE, MAP, and Basic Supervised Learning

CSE 6363 - Machine Learning Homework 1: MLE, MAP, and Basic Supervised LearningCSE 6363 - Machine LearningHomework 1- Spring 2019Due Date: Feb. 8 2019, 11:59 pmMLE and MAP1. In class we covered the derivation of basic learning algorithms to derive a