https://zh.wikipedia.org/wiki/%E6%A0%B8%E7%B3%96%E9%AB%94RNA
核糖体RNA(ribosomal RNA, rRNA)是生物细胞中主要的核糖核酸之一,是一种具有催化能力的核糖酶,但其单独存在时不能发挥作用,仅在与多种核糖体蛋白质共同构成核糖体(一种无膜细胞器)后才能执行其功能。23S和28S rRNA在翻译过程中作为肽酰转移酶催化多肽(包括蛋白质)中氨基酸之间肽键的形成。rRNA是单链RNA,但通过折叠形成了广泛的双链区域。
目录
[隐藏]
原核生物与真核生物中的rRNA
生物种类 | 类型 | 大亚基 | 小亚基 |
原核生物 | 70S | 50S(5S、23S) | 30S(16S) |
真核生物 | 80S | 60S(5S、5.8S和28S) | 40S(18S) |
注意:“S”(沉降速度)这个单位是不能直接简单相加的,因为它代表沉降速度的度量而不是质量。每个亚基的沉降速度既受到其形状的影响,又受到其质量的影响。
70S核糖体中的rRNA
原核细胞及真核细胞内共生体的70S核糖体中包含3种沉降系数不同的rRNA,其中30S核糖体亚基中包含16S rRNA,50S核糖体亚基中包含5S rRNA和23S rRNA。[1]这3种rRNA在结构上有明显的不同。[2]
编码细菌三种rRNA的基因常被按16S-23S-5S的顺序组合在同一操纵子中共同转录。在细菌基因组中,往往有多个rRNA操纵子(例如大肠杆菌有七个:rrnA、B、C、D、E、G和H[3] ),当其中一部分被敲除后,仍可通过基因转换的方式从其他操纵子上获得。[4]古菌则存在只有单组rRNA操纵子的情况。
30S rRNA前体
主条目:30S rRNA前体
70S核糖体中的16S和23S rRNA由30S rRNA前体经加工产生,30S rRNA前体的相对分子质量约为2 MDa。在该加工过程中,30S rRNA前体的特定碱基被甲基化,然后经水解断裂产生17S和25S rRNA中间产物,再经核酸酶的作用去除少量核苷酸残基才最终分别得到16S和23S rRNA。而5S rRNA是从30S rRNA的3‘端分离的。[5]
16S rRNA
主条目:16S rRNA
原核生物的30S核糖体亚基中含有16S rRNA。16S rRNA的相对分子质量约为0.6 MDa,[6]长度约为1540 nt。[7]在30S核糖体亚基组装过程中,16S rRNA与其核糖体蛋白质S4、S7、S8、S15、S17和S20结合先行成初级复合物。[8]
16S rRNA约有一半的核苷酸形成链内碱基对,使其具有约60个螺旋;分子中未配对部分则形成突环。在浓度足够的Mg2+存在下分离得到的16S rRNA处于紧密状态,与30S核糖体亚基的结构相似。已发现16S rRNA中的一些序列与蛋白质合成时30S核糖体亚基、mRNA及一些翻译因子的结合有关。[9]核糖体16S rRNA的3‘端能识别待翻译mRNA的5‘端的夏因-达尔加诺序列,[10]起始翻译。另有研究表明,16S rRNA也能与进入核糖体P位点的tRNA相互作用。[11]
16S rRNA作为研究分类学和系统进化的分子[12]受到很大重视,[13]16S rRNA序列分析是当前对细菌进行分类学研究中较精确的一种技术。[14]随着分子生物学的快速发展以及该技术在医学微生物研究中的应用,对16S rRNA作为微生物分类依据的研究也逐渐发展起来[15]并已得到广泛认同。[16]
位于原核生物70S核糖体A位点的16S rRNA部分的是氨基糖苷类抗生素的作用靶位,该类抗生素通过与16S rRNA的A位点结合而阻碍原核翻译。[17]但由质粒介导的16S rRNA甲基化酶能将16S rRNA甲基化,从而导致细菌产生对该类抗生素较高的抗药性。[18]
5S rRNA
主条目:5S rRNA
基本上所有70S核糖体与80S核糖体(除了少数真菌、少数原生动物和少数较高级动物的线粒体核糖体[19])的大亚基中都含有5S rRNA。
5S rRNA相对分子质量约为40 kDa,[6]长度约为120 nt,[20]分子中有5个螺旋。[21]它在70S核糖体的50S核糖体亚基中与核糖体蛋白质L5、L18及L25结合。[22]5S rRNA约60%的核苷酸形成了链内碱基对。[9]已有研究表明,5S rRNA具有一个与tRNA特定序列互补的序列。[23]
70S核糖体中的5S rRNA被认为是一种传感装置,能促进核糖体中各功能中心的交流并组织翻译的进行。[24][25]缺少5S rRNA的核糖体的肽酰转移酶活性会下降。[26]
23S rRNA
主条目:23S rRNA
23S rRNA的相对分子质量约为1.2 MDa,[6]长度约为2900 nt,[27]分子一半以上核苷酸以分子内双链形式存在,[9]产生超过100个螺旋。[28] 它在70S核糖体的50S亚基中与核糖体蛋白质L1、L2、L3、L4、L9和L23结合形成初级复合物。[29]对紧密状态下23S rRNA的电镜研究表明,23S rRNA的形状与50S核糖体亚基相似。[9]
23S rRNA是核糖体催化功能的核心,[30]其结构域Ⅴ具有肽酰转移酶活性。[31]位于核糖体P位点的23S rRNA部分有特定区域能与进入核糖体的tRNA形成互补碱基对。[32]
P位点的23S rRNA部分是大环内酯类抗生素的作用靶位,该类抗生素通过与23S rRNA阻碍肽链延伸。但一些细菌可利用erm基因介导23S rRNA甲基化酶[33]使23S rRNA的甲基化,[34]从而降低核糖体对抗生素的亲合性;也有细菌能通过核糖体变构来影响抗生素作用。[35]
80S核糖体中的rRNA
小亚基核糖体RNA的5‘端域,来自Rfam数据中。该例子是:RF00177
80S核糖体中包含4种沉降系数不同的rRNA,其中,40S核糖体亚基(小亚基)中包含18S rRNA,而60S核糖体亚基(大亚基)中包含5S rRNA、5.8S rRNA和28S rRNA。
28S、5.8S与18S rRNA由单独的一个转录单位(45S rDNA)所转录,它们之间被两个内转录间隔区分隔。[36]45S rDNA被组织于5基因簇中,每个簇中大约有30-40次重复(真核生物在串联重复序列中通常拥有多个rDNA的备份),人类大概有300-400个rDNA重复段存在于五个基因簇中(分别在13、14、15、21和22号染色体上)。
45S rRNA前体
主条目:45S rRNA前体
80S核糖体中的28S rRNA、5.8S rRNA和18S rRNA由长度约为14,000 nt的45S rRNA前体在细胞核的核仁加工产生。加工过程中,该rRNA前体的100多个核苷酸会被甲基化,再经过一系列酶促反应被剪切成几条RNA链。[5]
18S rRNA
主条目:18S rRNA
18S rRNA是16S rRNA的同源RNA,其相对分子质量约为0.7 MDa,[6]长度约为1900 nt。[27]18S rRNA除了比16S rRNA稍长且多一些臂和环结构外,两者空间结构十分相似,[9]在核糖体中起到的作用也基本相同。
5S rRNA
主条目:5S rRNA
真核细胞中的5S rDNA存在于串联重复基因中(大约有200-300个真5S rDNA,且另有许多分散的假基因),人类的最大的一个位于1号染色体长臂41号带-42号带上。5S rDNA与其余三种80S核糖体的rRNA的基因不同,该基因并不位于核仁组织区,且由RNA聚合酶III所转录。
5.8S rRNA
主条目:5.8S rRNA
5.8S rRNA的相对分子质量约为40 kDa,[6]长度约为160 nt。[27]也存在于古菌细胞中。
核糖体中的5.8S rRNA被认为起到辅助核糖体易位的作用。[37]
5.8S rRNA可以用作探测miRNA的内参基因。[38]
28S rRNA
主条目:28S rRNA
28S rRNA是23S rRNA的同源RNA,其相对分子质量约为1.7 MDa,[6]长度约为4700 nt。[27]真核生物28S rRNA的结构与大肠杆菌23S rRNA的相似。[9]
其他rRNA
- 哺乳动物细胞的线粒体中含有一种55S核糖体,其28S核糖体亚基(小亚基)中含有长度约为950 nt的12S rRNA,其39S核糖体亚基(大亚基)中则含有长度约为1560 nt的另一种16S rRNA。[27]
rRNA的重要性
- rRNA是所有细胞中都会表达的基因,即所有拥有细胞结构的生物都拥有rRNA[39]。因此可以通过对编码rRNA的基因进行测序来对某种生物进行分类学上的分类、计算出相关的种群或估测物种的差异度。已有逾千种rRNA已被测序,测序的结果被储存在特殊的数据库(如RDP-II[40]和SILVA[41])中。
- 核糖体中的rRNA是多种临床有关抗生素的靶位点,例如:巴龙霉素可特异性地与原核生物核糖体的30S小亚基的A区(该区存在16S rRNA)结合,干扰翻译过程的正常进行[42]。其他通过与rRNA反应起到杀菌作用的抗生素还有:氯霉素、红霉素、春雷霉素、微球菌素、蓖麻毒素、帚曲霉素、大观霉素、链霉素及硫链丝霉素。
研究价值
在近年的系统发育树中,rRNA序列(尤其是小亚基rRNA,SSU rRNA)成为最常用的做树依据,因为SSU rRNA具有以下特点:
- 长度适中,通常为1200-1900 nt,能够提供足够的信息但又不过长。
- 完全广泛分布于所有具有细胞结构的生物,而且进化过程相对缓慢。其中保守区可用于构建所有生命的统一进化树,而易变的区域可用来区别属或者种。
- rRNA基因的水平转移非常难发生,因为它们的功能十分基本且重要,需要翻译机制的精细调控才能够正常实现功能。
相关基因
细胞质基质核糖体大亚基核糖体蛋白基因显示▼
线粒体核糖体大亚基核糖体蛋白基因显示▼
细胞质基质核糖体小亚基核糖体蛋白基因显示▼
线粒体核糖体小亚基核糖体蛋白基因显示▼