RDD的容错机制

RDD的容错机制  

  RDD实现了基于Lineage的容错机制。RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage。在部分计算结果丢失时,只需要根据这个Lineage重算即可。
  图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来。缓存起来的结果会被后续的计算使用。图中的示意是说RDD1的Partition2缓存丢失。如果现在计算RDD3所在的作业,那么它所依赖的Partition0、1、3和4的缓存都是可以使用的,无须再次计算。但是Partition2由于缓存丢失,需要从头开始计算,Spark会从RDD0的Partition2开始,重新开始计算。
  内部实现上,DAG被Spark划分为不同的Stage,Stage之间的依赖关系可以认为就是Lineage。关于DAG的划分可以参阅第4章。
  提到Lineage的容错机制,不得不提Tachyon。Tachyon包含两个维度的容错,一个是Tachyon集群的元数据的容错,它采用了类似于HDFS的Name Node的元数据容错机制,即将元数据保存到一个Image文件,并且保存了元数据变化的编辑日志(EditLog)。另外一个是Tachyon保存的数据的容错机制,这个机制类似于RDD的Lineage,Tachyon会保留生成文件数据的Lineage,在数据丢失时会通过这个Lineage来恢复数据。如果是Spark的数据,那么在数据丢失时Tachyon会启动Spark的Job来重算这部分内容。如果是Hadoop产生的数据,那么重新启动相应的Map Reduce Job就可以。现在Tachyon的容错机制的实现还处于开发阶段,并不推荐将这个机制应用于生产环境。不过,这并不影响Spark使用Tachyon。如果Spark保存到Tachyon的部分数据丢失,那么Spark会根据自有的容错机制来重算这部分数据。

                     

                          图1  RDD的部分缓存丢失的逻辑图

时间: 2024-11-09 23:33:18

RDD的容错机制的相关文章

RDD之七:Spark容错机制

引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息

【Spark】Spark容错机制

引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息

RDD的checkpoint机制

checkpoint原理机制 当RDD使用cache机制从内存中读取数据,如果数据没有读到,会使用checkpoint机制读取数据.此时如果没有checkpoint机制,那么就需要找到父RDD重新计算数据了,因此checkpoint是个很重要的的容错机制.checkpoint就是对于一个RDDchain(链),如果后面需要反复使用某些中间结果RDD,可能因为一些故障导致该中间数据丢失,那么就可以针对该RDD启动checkpoint机制,使用checkpoint首先需要调用sparkContext

62、Spark Streaming:容错机制以及事务语义

一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou

sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 6.2      窄依赖 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用 总结:窄依赖我们形象的比喻为独生子女.窄依赖不会产生shuffle,比如说:flatMap/map/filter.... 6.3      宽依赖 宽依赖指的是多个子RDD的Pa

ack是什么,如何使用Ack机制,如何关闭Ack机制,基本实现,STORM的消息容错机制,Ack机制

1.ack是什么 ack 机制是storm整个技术体系中非常闪亮的一个创新点. 通过Ack机制,spout发送出去的每一条消息,都可以确定是被成功处理或失败处理, 从而可以让开发者采取动作.比如在Meta中,成功被处理,即可更新偏移量,当失败时,重复发送数据. 因此,通过Ack机制,很容易做到保证所有数据均被处理,一条都不漏. 另外需要注意的,当spout触发fail动作时,不会自动重发失败的tuple,需要spout自己重新获取数据,手动重新再发送一次 ack机制即, spout发送的每一条消

架构师之路--搜索业务和技术介绍及容错机制

今天和搜索部门一起做了一下MQ的迁移,顺便交流一下业务和技术.发现现在90后小伙都挺不错.我是指能力和探究心.我家男孩,不招女婿. 在前面的文章中也提到,我们有媒资库(乐视视频音频本身内容)和全网作品库(外部视频音频内容),数据量级都在千万级.我们UV,PV,CV,VV都是保密的.所以作为一个合格的员工来说………………数值我也不知道.总之,这些数据作为最终数据源,要走一个跨多个部门的工作流才最终出现在用户点击搜索按钮出现的搜索框里.大体流程图如下: 这个流程图之所以没像以往一样手绘,嗯,那是因为

数据流容错机制

该文档翻译自Data Streaming Fault Tolerance,文档描述flink在流式数据流图上的容错机制. ------------------------------------------------------------------------------------------------- 一.介绍 flink提供了可以一致地恢复数据流应用的状态的容错机制,该机制保证即使在错误发生后,反射回数据流记录的程序的状态操作最终仅执行一次.值得注意的是,该保证可以降低为“至少执

13.容错机制

知识点: 容错机制 一.容错机制:master选举,replica容错,数据恢复 假设有9个shard(3个primary+6个replica), 3个node, 此时如果有一个master node宕机,容错机制如下: 就会有一个primary丢失,在短时间内,status 是red,ES会自动选取另一个node成为新的master node. 新产生的master shard 会将丢失的primay shard 的某一个replica shard 提升为primary shard,此时clu