5-1 Maximum Subsequence Sum (25分)

Given a sequence of KK integers { N_1N?1??, N_2N?2??, ..., N_KN?K?? }. A continuous subsequence is defined to be { N_iN?i??, N_{i+1}N?i+1??, ..., N_jN?j?? } where 1 \le i \le j \le K1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer KK (\le 10000≤10000). The second line contains KK numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices ii and jj (as shown by the sample case). If all the KK numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

--------------------------------------------------------------很无奈,最后测评只用23分,不知道哪个地方测试没通过--------------------------------------------------------------
 1 #include <stdio.h>
 2
 3 int main(int argc, char const *argv[])
 4 {
 5     int n = 0, i, s[10000];
 6     int subSum = 0, maxSum = 0;
 7     int start, end, t;
 8     scanf("%d", &n);
 9
10     // input number
11     for(i = 0; i < n; i++)
12     {
13         scanf("%d", &s[i]);
14     }
15
16     start = 0;
17     for(i = 0; i < n; i++)
18     {
19         subSum += s[i];
20         if(subSum < 0)
21         {
22             subSum = 0;
23             t = i+1;
24         }
25         else if(subSum > maxSum)
26         {
27             maxSum = subSum;
28             start = t;
29             end = s[i];
30         }
31     }
32
33     if(maxSum == 0)  //全部为负数
34         printf("%d %d %d\n", 0, s[0], s[n-1]);
35     else
36         printf("%d %d %d\n", maxSum, start, end);
37     return 0;
38 }
时间: 2024-12-29 06:14:53

5-1 Maximum Subsequence Sum (25分)的相关文章

[PTA] PAT(A) 1007 Maximum Subsequence Sum (25 分)

目录 Problem Description Input Output Sample Sample Input Sample Output Solution Analysis Code Problem portal: 1007 Maximum Subsequence Sum (25 分) Description Given a sequence of $K$ integers { $N_{1}?$, $N_{2}?$, $...$, $N_{K}$ }. A continuous subsequ

1007 Maximum Subsequence Sum (25分) 求最大连续区间和

1007 Maximum Subsequence Sum (25分) Given a sequence of K integers { N?1??, N?2??, ..., N?K?? }. A continuous subsequence is defined to be { N?i??, N?i+1??, ..., N?j?? } where 1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has th

PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)

1??, N2N_2N?2??, ..., NKN_KN?K?? }. A continuous subsequence is defined to be { NiN_iN?i??, Ni+1N_{i+1}N?i+1??, ..., NjN_jN?j?? } where 1≤i≤j≤K1 \le i \le j \le K1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum

pta 1007 Maximum Subsequence Sum (25分)

Given a sequence of K integers { N?1??, N?2??, ..., N?K?? }. A continuous subsequence is defined to be { N?i??, N?i+1??, ..., N?j?? } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For exampl

01-复杂度2 Maximum Subsequence Sum (25分)

Given a sequence of KKK integers { N1N_1N?1??, N2N_2N?2??, ..., NKN_KN?K?? }. A continuous subsequence is defined to be { NiN_iN?i??, Ni+1N_{i+1}N?i+1??, ..., NjN_jN?j?? } where 1≤i≤j≤K1 \le i \le j \le K1≤i≤j≤K. The Maximum Subsequence is the contin

数据结构课后练习题(练习一)1007 Maximum Subsequence Sum (25 分)

Given a sequence of K integers { N?1??, N?2??, ..., N?K?? }. A continuous subsequence is defined to be { N?i??, N?i+1??, ..., N?j?? } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For exampl

1007 Maximum Subsequence Sum (25 分)

Given a sequence of K integers { N?1??, N?2??, ..., N?K?? }. A continuous subsequence is defined to be { N?i??, N?i+1??, ..., N?j?? } where 1. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For exampl

PTA 1007 Maximum Subsequence Sum (25 分)

1 #include <stdio.h> 2 #include <iostream> 3 #include <string.h> 4 #include <vector> 5 #include <algorithm> 6 #include <cassert> 7 #include <queue> 8 using namespace std; 9 int n; 10 int main() 11 { 12 cin >>

1007 Maximum Subsequence Sum (25分)(动态规划DP)

#include <vector> #include<iostream> using namespace std; int main() { int k; cin>>k; int left_index=0,right_index=k-1,sum=-1,tmp=0,tmp_index=0; vector <int> num(k); for(int i=0;i<k;i++) { cin>>num[i]; tmp+=num[i]; if(tmp&