【原创】大数据基础之Kudu(1)简介、安装

kudu 1.7

官方:https://kudu.apache.org/

一 简介

kudu有很多概念,有分布式文件系统(HDFS),有一致性算法(Zookeeper),有Table(Hive Table),有Tablet(Hive Table Partition),有列式存储(Parquet),有顺序和随机读取(HBase),所以看起来kudu是一个轻量级的 HDFS + Zookeeper + Hive + Parquet + HBase,除此之外,kudu还有自己的特点,快速写入+读取,使得kudu+impala非常适合OLAP场景,尤其是Time-series场景。

A new addition to the open source Apache Hadoop ecosystem, Apache Kudu completes Hadoop‘s storage layer to enable fast analytics on fast data.

kudu是hadoop生态的有力补充,使得hadoop存储层也可以支持快速变化数据上的快速分析;

  • Streamlined Architecture

    •   Kudu provides a combination of fast inserts/updates and efficient columnar scans to enable multiple real-time analytic workloads across a single storage layer. As a new complement to HDFS and Apache HBase, Kudu gives architects the flexibility to address a wider variety of use cases without exotic workarounds.

kudu提供了快速写入更新的能力和高效列式扫描的能力,使得直接在存储层上实现实时分析成为可能,简化了传统技术栈;

  • Faster Analytics

    •   Kudu is specifically designed for use cases that require fast analytics on fast (rapidly changing) data. Engineered to take advantage of next-generation hardware and in-memory processing, Kudu lowers query latency significantly for Apache Impala (incubating) and Apache Spark (initially, with other execution engines to come).

kudu被设计为尤其适合在快速变化的数据上进行快速分析的场景,利用下一代硬件以及内存处理的优势,kudu降低了impala和spark的查询延迟;

Kudu is a columnar storage manager developed for the Apache Hadoop platform. Kudu shares the common technical properties of Hadoop ecosystem applications: it runs on commodity hardware, is horizontally scalable, and supports highly available operation.

kudu是一个hadoop平台的列式存储层,它继承了hadoop生态的技术特点:通用硬件、水平扩展、高可用;

Kudu’s design sets it apart. Some of Kudu’s benefits include:

  • Fast processing of OLAP workloads.
  • Integration with MapReduce, Spark and other Hadoop ecosystem components.
  • Tight integration with Apache Impala, making it a good, mutable alternative to using HDFS with Apache Parquet.
  • Strong but flexible consistency model, allowing you to choose consistency requirements on a per-request basis, including the option for strict-serializable consistency.
  • Strong performance for running sequential and random workloads simultaneously.
  • Easy to administer and manage with Cloudera Manager.
  • High availability. Tablet Servers and Masters use the Raft Consensus Algorithm, which ensures that as long as more than half the total number of replicas is available, the tablet is available for reads and writes. For instance, if 2 out of 3 replicas or 3 out of 5 replicas are available, the tablet is available.
  • Reads can be serviced by read-only follower tablets, even in the event of a leader tablet failure.
  • Structured data model.

kudu有以上诸多特点:快速OLAP、整合其他hadoop生态组件(比如spark)、整合Impala、快速顺序和随机读取、可配置的数据一致性、高可用、结构化数据模型;

By combining all of these properties, Kudu targets support for families of applications that are difficult or impossible to implement on current generation Hadoop storage technologies. A few examples of applications for which Kudu is a great solution are:

  • Reporting applications where newly-arrived data needs to be immediately available for end users
  • Time-series applications that must simultaneously support:
    •   queries across large amounts of historic data
    •   granular queries about an individual entity that must return very quickly
  • Applications that use predictive models to make real-time decisions with periodic refreshes of the predictive model based on all historic data

当kudu有了以上特点之后,使得传统hadoop存储技术很难解决的一些场景成为可能,比如:数据快速变化的报表系统、Timer-series应用、实时决策系统;

kudu架构

概念

Table

A table is where your data is stored in Kudu. A table has a schema and a totally ordered primary key. A table is split into segments called tablets.

Table(类似于hive或hbase的table),有schema和primary key,可以划分为多个Tablet;

Tablet

A tablet is a contiguous segment of a table, similar to a partition in other data storage engines or relational databases. A given tablet is replicated on multiple tablet servers, and at any given point in time, one of these replicas is considered the leader tablet. Any replica can service reads, and writes require consensus among the set of tablet servers serving the tablet.

Tablet(类似于hive中的partition或hbase中的region),tablet是多副本的,存放在多个tablet server上,多个副本中有一个是leader tablet;所有的副本都可以读,但是写操作只有leader可以,写操作利用一致性算法(Raft);

Tablet Server

A tablet server stores and serves tablets to clients. For a given tablet, one tablet server acts as a leader, and the others act as follower replicas of that tablet. Only leaders service write requests, while leaders or followers each service read requests. Leaders are elected using Raft Consensus Algorithm. One tablet server can serve multiple tablets, and one tablet can be served by multiple tablet servers.

tablet server(类似于hbase中的region server),存放tablet并且相应client请求;一个tablet server存放多个tablet;

Catalog Table

The catalog table is the central location for metadata of Kudu. It stores information about tables and tablets. The catalog table may not be read or written directly. Instead, it is accessible only via metadata operations exposed in the client API.
The catalog table stores two categories of metadata: Tables & Tablets

catalog table存放kudu的metadata(类似于hive和hbase中的metadata),catalog table包含两类metadata:Tables和Tablets

Master

The master keeps track of all the tablets, tablet servers, the Catalog Table, and other metadata related to the cluster. At a given point in time, there can only be one acting master (the leader). If the current leader disappears, a new master is elected using Raft Consensus Algorithm.
The master also coordinates metadata operations for clients. For example, when creating a new table, the client internally sends the request to the master. The master writes the metadata for the new table into the catalog table, and coordinates the process of creating tablets on the tablet servers.
All the master’s data is stored in a tablet, which can be replicated to all the other candidate masters.
Tablet servers heartbeat to the master at a set interval (the default is once per second).

master(类似于hdfs和hbase的master),负责管理所有的tablet、tablet server、catalog table以及其他元数据。同一时间集群中只有一个acting master(leader master),如果leader master挂了,一个新的master会通过Raft算法选举出来。
所有的master数据都存放在一个tablet中,这个tablet会被复制到所有的candidate master上;
tablet server会定期向master发送心跳。

Raft Consensus Algorithm

Kudu uses the Raft consensus algorithm as a means to guarantee fault-tolerance and consistency, both for regular tablets and for master data. Through Raft, multiple replicas of a tablet elect a leader, which is responsible for accepting and replicating writes to follower replicas. Once a write is persisted in a majority of replicas it is acknowledged to the client. A given group of N replicas (usually 3 or 5) is able to accept writes with at most (N - 1)/2 faulty replicas.

kudu通过Raft一致性算法(类似于zookeeper中的Paxos算法)来保证tablet和master数据的容错性和一致性。详见:https://raft.github.io/

Logical Replication

Kudu replicates operations, not on-disk data. This is referred to as logical replication, as opposed to physical replication.

kudu使用的是逻辑副本的概念。

二 安装

1 安装ntp服务

详见:https://www.cnblogs.com/quchunhui/p/7658853.html

2 增加repo

# cat /etc/yum.repos.d/cdh.repo

[cloudera-cdh5]
# Packages for Cloudera‘s Distribution for Hadoop, Version 5, on RedHat or CentOS 7 x86_64
name=Cloudera‘s Distribution for Hadoop, Version 5
baseurl=https://archive.cloudera.com/cdh5/redhat/7/x86_64/cdh/5/
gpgkey =https://archive.cloudera.com/cdh5/redhat/7/x86_64/cdh/RPM-GPG-KEY-cloudera
gpgcheck = 1

这里没有指定版本,默认会安装最新

3 master安装

# yum install kudu kudu-master kudu-client0 kudu-client-devel

配置文件

/etc/kudu/conf/master.gflagfile

可以修改数据路径

启动,可以启动多个master

# service kudu-master start

4 tserver安装

# yum install kudu kudu-tserver kudu-client0 kudu-client-devel

配置文件

/etc/kudu/conf/tserver.gflagfile

修改master地址,可以配置多个

--tserver_master_addrs=$master_server:7051

启动

# service kudu-tserver start

三 使用

通过impala-shell读写数据

[$impala_server:21000] >
CREATE TABLE impala.test_kudu (
id INT,
name STRING,
PRIMARY KEY (id)
)
PARTITION BY HASH (id) PARTITIONS 4
STORED AS KUDU
TBLPROPERTIES (‘kudu.master_addresses‘=‘$kudu_master:7051‘);
[$impala_server:21000] > select * from test_kudu;
Query: select * from test_kudu
Query submitted at: 2019-01-21 12:53:04 (Coordinator: http://$impala_server:25000)
Query progress can be monitored at: http://$impala_server:25000/query_plan?query_id=e345f450c0dca86a:4769860f00000000
+----+-------+
| id | name |
+----+-------+
| 1 | test |
+----+-------+
Fetched 1 row(s) in 0.13s

同时可以在kudu中看到新创建的表

原文地址:https://www.cnblogs.com/barneywill/p/10296475.html

时间: 2024-11-09 01:04:27

【原创】大数据基础之Kudu(1)简介、安装的相关文章

【原创】大数据基础之Kudu(2)移除dead tsever

当kudu有tserver下线或者迁移之后,旧的tserver会一直以dead状态出现,并且tserver日志中会有大量的连接重试日志,一天的错误日志会有几个G, W0322 22:13:59.202749 16927 tablet_service.cc:290] Invalid argument: UpdateConsensus: Wrong destination UUID requested. Local UUID: e2f80a1fcf0c47f6b7f220a44d69297f. Re

【原创】大数据基础之Kudu(5)kudu增加或删除目录/数据盘

kudu加减数据盘不能直接修改配置fs_data_dirs后重启,否则会报错: Check failed: _s.ok() Bad status: Already present: FS layout already exists; not overwriting existing layout: FSManager roots already exist: /data0/kudu/data 官方解释如下: When Kudu starts, it checks each configured

区块链这些技术与h5房卡斗牛平台出售,大数据基础软件干货不容错过

在IT产业发展中,包括CPU.操作系统h5房卡斗牛平台出售 官网:h5.super-mans.com 企娥:2012035031 vx和tel:17061863513 h5房卡斗牛平台出售在内的基础软硬件地位独特,不但让美国赢得了产业发展的先机,成就了产业巨头,而且因为技术.标准和生态形成的壁垒,主宰了整个产业的发展.错失这几十年的发展机遇,对于企业和国家都是痛心的. 当大数据迎面而来,并有望成就一个巨大的应用和产业机会时,企业和国家都虎视眈眈,不想错再失这一难得的机遇.与传统的IT产业一样,大

大数据基础教程:创建RDD的二种方式

大数据基础教程:创建RDD的二种方式 1.从集合中创建RDD val conf = new SparkConf().setAppName("Test").setMaster("local")      val sc = new SparkContext(conf)      //这两个方法都有第二参数是一个默认值2  分片数量(partition的数量)      //scala集合通过makeRDD创建RDD,底层实现也是parallelize      val 

大数据平台CDH5.14.2 的安装配置

大数据平台CDH5.14.2 的安装配置 标签(空格分隔): 大数据平台构建 一:系统环境初始化 二:安装CDH5.14.2 平台 三:分配主机与分配角色 一: 系统环境初始化 1.1: 系统环境介绍 系统: CentOS7.5X64 cat /etc/hosts --- 172.17.100.11 node-01.flyfish 172.17.100.12 node-02.flyfish 172.17.100.13 node-03.flyfish 172.17.100.14 node-04.f

【原创】大数据基础之Impala(1)简介、安装、使用

impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic database for Apache Hadoop. Impala is shipped by Cloudera, MapR, Oracle, and Amazon. impala是hadoop上的开源分析性数据库: Do BI-style Queries on Hadoop Impala provides

大数据基础架构详解

简介:本文是对大数据领域的基础论文的阅读总结,相关论文包括GFS,MapReduce.BigTable.Chubby.SMAQ. 大数据出现的原因: 大多数的技术突破来源于实际的产品需要,大数据最初诞生于谷歌的搜索引擎中.随着web2.0时代的发展,互联网上数据量呈献爆炸式的增长,为了满足信息搜索的需要,对大规模数据的存储提出了非常强劲的需要.基于成本的考虑,通过提升硬件来解决大批量数据的搜索越来越不切实际,于是谷歌提出了一种基于软件的可靠文件存储体系GFS,使用普通的PC机来并行支撑大规模的存

大数据基础和hadoop

一.大数据的特点 大数据是什么?其实很简单,大数据其实就是海量资料巨量资料,这些巨量资料来源于世界各地随时产生的数据,在大数据时代,任何微小的数据都可能产生不可思议的价值.大数据有4个特点,为别为:Volume(大量).Variety(多样).Velocity(高速).Value(价值),一般我们称之为4V. 所谓4V,具体指如下4点: 1.大量.大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,

“大数据“基础知识普及

大数据,官方定义是指那些数据量特别大.数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理.大数据的主要特点为数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity),合起来被称为4V. 大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用传统的关系型数据库去