Python 3基础教程6-for循环语句

本文介绍另外一种循环语句,for循环,直接看例子。

用for实现打印1到9的数字。

方法一:写入一个列表,然后遍历列表

# 这里介绍 for循环
# 打印1到9

exampleList = [1,2,3,4,5,6,7,8,9]

for eachNumber in exampleList:
print (eachNumber)
方法二:用Python自带函数range(1,9)
# 打印1到9

for i in range(1,10):
print (i)
注意上面是range(1,10),右边是不包括的,左边包括,Python中列表也有这个规则。
再来练习1到100相加结果

sum = 0
i = 1
while i<101:
sum += i
i = i + 1
print (sum)

原文地址:https://www.cnblogs.com/wangyinghao/p/10623203.html

时间: 2025-01-04 12:04:18

Python 3基础教程6-for循环语句的相关文章

python学习笔记七:条件&循环语句

1.print/import更多信息 print打印多个表达式,使用逗号隔开 >>> print 'Age:',42 Age: 42   #注意个结果之间有一个空格符 import:从模块导入函数 import 模块 from 模块 import 函数 from 模块 import * 如果两个模块都有open函数的时候, 1)使用下面方法使用: module1.open()... module2.open()... 2)语句末尾增加as子句 >>> import ma

《Python机器学习基础教程》高清版免费PDF下载

Python机器学习基础教程-[德] 安德里亚斯·穆勒(Andreas C.Müller)[美]莎拉·吉多(Sarah Guido) 著,张亮(hysic) 译 下载地址1:网盘下载 下载地址2:网盘下载 内容简介本书是机器学习入门书,以Python语言介绍.主要内容包括:机器学习的基本概念及其应用:实践中常用的机器学习算法以及这些算法的优缺点:在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面:模型评估和调参的方法,重点讲解交叉验证和网格搜索:管道的概念:如何将前面各章的方

分享《Python数据分析基础教程:NumPy学习指南(第2版)》高清中文PDF+英文PDF+源代码

下载:https://pan.baidu.com/s/1YSD97Gd3gmmPmNkvuG0eew更多资料分享:http://blog.51cto.com/3215120 <Python数据分析基础教程:NumPy学习指南(第2版)>高清中文PDF+高清英文PDF+源代码 高清中文版PDF,249页,带目录和书签,文字能够复制粘贴:高清英文版PDF,310页,带目录和书签,文字能够复制粘贴:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中高清中文版如图: 原文地址:http://

《Python机器学习基础教程》高清中文版PDF+高清英文版PDF+源代码

资源链接:https://pan.baidu.com/s/1sa64QTsQ7A5WlZxMuNmYHg<Python机器学习基础教程>高清中文版PDF+高清英文版PDF+源代码高清中文版PDF,306页,带目录和书签,文字能够复制粘贴:高清英文版PDF,392页,带目录和书签,彩色配图,文字能够复制粘贴:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中,高清中文版如图: 原文地址:http://blog.51cto.com/14063572/2317004

Python机器学习基础教程

介绍 本系列教程基本就是搬运<Python机器学习基础教程>里面的实例. Github仓库 使用 jupyternote book 是一个很好的快速构建代码的选择,本系列教程都能在我的Github仓库找到对应的 jupyter notebook . Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程入口 Python机器学习基础教程-第一章-鸢尾花的例子KNN 原文地址:https

Numpy学习:《Python数据分析基础教程NumPy学习指南第2版》中文PDF+英文PDF+代码

NumPy是一个优秀的科学计算库,提供了很多实用的数学函数.强大的多维数组对象和优异的计算性能,不仅可以取代Matlab和Mathematica的许多功能,而且业已成为Python科学计算生态系统的重要组成部分.但与这些商业产品不同,它是免费的开源软件. 推荐学习<Python数据分析基础教程NumPy学习指南第2版>,通过书中丰富的示例,学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效. 学习参考: &l

python机器学习基础教程-鸢尾花分类

一: 环境准备: 1.导入的库: import numpy as np import matplotlib.pyplot as plt import pandas as pd import mglearn 2.导入数据集 from sklearn.datasets import load_iris iris_dataset = load_iris() 二. 划分训练数据和测试数据 1. train_test_split: 将数据集打乱并进行拆分 from sklearn.model_select

段小手《深入浅出Python机器学习》PDF+代码+《Python机器学习基础教程》高清中英文PDF代码+张亮

机器学习正在迅速改变我们的世界.我们几乎每天都会读到机器学习如何改变日常的生活.如果你在淘宝或者京东这样的电子商务网站购买商品,或者在爱奇艺或是腾讯视频这样的视频网站观看节目,甚至只是进行一次百度搜索,就已经触碰到了机器学习的应用.使用这些服务的用户会产生数据,这些数据会被收集,在进行预处理之后用来训练模型,而模型会通过这些数据来提供更好的用户体验. 此外,目前还有很多使用机器学习技术的产品或服务即将在我们的生活当中普及,如能够解放双手的无人驾驶汽车.聪明伶俐的智能家居产品.善解人意的导购机器人

机器学习资料《分布式机器学习算法理论与实践》+《白话机器学习算法》+《Python机器学习基础教程》

机器学习正在迅速改变我们的世界.我们几乎每天都会读到机器学习如何改变日常的生活. 人工智能和大数据时代,解决最有挑战性问题的主流方案是分布式机器学习! <分布式机器学习:算法.理论与实践>电子书资料全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向. 我认为第3章到第8章是核心,讲解分布式机器学习的框架及其各个功能,分别针对其中的数据与模型划分模块.单机优化模块.通信模块.数据与模型聚合模块加以介绍.最有用的是第9章,学习由分布式机器学习框架中不同选项所组合