初识prufer序列

前言

\(prufer\)序列应该是一个比较实用的东西。

据\(hl666\)大佬说,一切与度数有关的树上计数问题,都可以用它以及它的性质来解决。

而听说\(ZJOI\)最近特别喜欢出计数题,所以有必要学一学。

转化\(1\):从无根树到\(prefur\)序列

现在,给你一棵树,我们要考虑如何把它变成\(prefur\)序列。

我们需要重复进行以下操作,直至树中只剩下两个点:

  • 找到一个度数为\(1\),且编号最小的点。(其中编号最小保证了后面将会提到的\(prufer\)序列的唯一对应性,同时也方便从\(prufer\)序列转化回无根树)
  • 把这个点的父亲节点加入序列,然后把这个点从树中删除。

然后我们就得到了一个长度为\(n-2\)的序列,这就是\(prufer\)序列。

所以它有什么实际意义呢?

我也不知道。

以上面的图为例,我们可以模拟这一过程如下:

  • 找到\(4\)号节点,将其父结点加入序列,然后将其删去。此时序列:\(\{2\}\)。
  • 找到\(5\)号节点,将其父结点加入序列,然后将其删去。此时序列:\(\{2,3\}\)。
  • 找到\(3\)号节点,将其父结点加入序列,然后将其删去。此时序列:\(\{2,3,1\}\)。
  • 找到\(6\)号节点,将其父结点加入序列,然后将其删去。此时序列:\(\{2,3,1,2\}\)。
  • 找到\(2\)号节点,将其父结点加入序列,然后将其删去。此时序列:\(\{2,3,1,2,1\}\)。

所以,最后得到的\(prufer\)序列就是\(\{2,3,1,2,1\}\)。

转化\(2\):从\(prufer\)序列到无根树

还是以刚才那棵树为例吧,我们要考虑如何把它的\(prefur\)序列变回它本身。

我们需要重复进行以下操作,直至点集中只剩下两个点:(初始化所有点都在点集中)

  • 取出\(prufer\)序列最前面的元素\(x\)。
  • 取出在点集中的、且当前不在\(prufer\)序列中的最小元素\(y\)。(这恰好呼应了前面提到过的选取编号最小的节点)
  • 在\(x,y\)之间连接一条边。(注意前面的取出相当于删除)

最后,我们在点集中剩下的两个点中连一条边。

显然这有\(n-1\)条边,且绝对不会形成环,因此它是一棵树,且就是原树。

以上面的序列为例,我们可以模拟这一过程如下:

  • 取出\(2,4\)连边。此时\(prufer\)序列:\(\{3,1,2,1\}\),点集:\(\{1,2,3,5,6,7\}\)。
  • 取出\(3,5\)连边。此时\(prufer\)序列:\(\{1,2,1\}\),点集:\(\{1,2,3,6,7\}\)。
  • 取出\(1,3\)连边。此时\(prufer\)序列:\(\{2,1\}\),点集:\(\{1,2,6,7\}\)。
  • 取出\(2,6\)连边。此时\(prufer\)序列:\(\{1\}\),点集:\(\{1,2,7\}\)。
  • 取出\(1,2\)连边。此时\(prufer\)序列:\(\{\}\),点集:\(\{1,7\}\)。

最后再在\(1,7\)间连边,就可以得到原树了。

\(prufer\)序列的性质及相关结论

讲了这么多,我们最关键的还是\(prufer\)序列的一些性质,以及与其有关的一些结论。(毕竟前面也提到过,我也不知道这东西有什么实际意义

  • 重要性质:\(prufer\)序列与无根树一一对应。

    这应该显然吧,通过前面的介绍应该可以直接得出。

    而由这个性质,我们才能推导出后面的结论。

  • 度数为\(d_i\)的节点会在\(prufer\)序列中出现\(d_i-1\)次

    当某个节点度数为\(1\)时,会直接被删掉,否则每少掉一个相邻的节点,它就会在序列中出现\(1\)次。

    因此共出现\(d_i-1\)次。

  • 一个\(n\)个节点的完全图的生成树个数为\(n^{n-2}\)。

    对于一个\(n\)个点的无根树,它的\(prufer\)序列长为\(n-2\),而每个位置有\(n\)种可能性,因此可能的\(prufer\)序列有\(n^{n-2}\)种。

    又由于\(prufer\)序列与无根树一一对应,因此生成树个数应与\(prufer\)序列种树相同,即\(n^{n-2}\)。

  • 对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况

    由上面的性质可以知道,度数为\(d_i\)的节点会在\(prufer\)序列中出现\(d_i-1\)次。

    则就是要求出\(d_i-1\)个\(i(1\le i\le n)\)的全排列个数。

    而上面那个式子就是可重全排列公式。(即全排列个数除以重复元素内部的全排列个数

大致就是这些。

例题

下面有两道例题:【洛谷2290】[HNOI2004] 树的计数【洛谷2624】[HNOI2008] 明明的烦恼

实际上,这两道题都只用了由\(prufer\)序列所推导得到的结论,而没有真正构造\(prufer\)序列,应该也不算特别好的例题。。。

原文地址:https://www.cnblogs.com/chenxiaoran666/p/prufer.html

时间: 2024-10-05 12:05:21

初识prufer序列的相关文章

[BZOJ1211][HNOI2004]树的计数(Prufer序列)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那题 说下prufer序列的性质: 1.一个无根树对应一个prufer序列 2.一个n个节点无根树对应的prufer序列长度为n-2 3.prufer序列中某节点出现的次数==这个节点在对应的无根树中度数-1 所以这题求无根树的数量等价于求prufer序列的数量. 注意无解的情况就行了.

POJ 2567 Code the Tree & POJ 2568 Decode the Tree Prufer序列

题目大意:2567是给出一棵树,让你求出它的Prufer序列.2568时给出一个Prufer序列,求出这个树. 思路:首先要知道Prufer序列.对于随意一个无根树,每次去掉一个编号最小的叶子节点,并保存这个节点所连接的节点所得到的序列就是这棵树的Prufer序列. 这个序列有十分优雅的性质.它能与无根树一一相应.因此.两个标号一样的无根树得到的Prufer序列也一定是一样的. 此外,设一个节点的度数是d[i],那么他会在Prufer序列中出现d[i] - 1次. 2567:记录每个节点的度.依

BZOJ 1005 明明的烦恼(prufer序列+高精度)

有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合可以推出公式.需要用高精度. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 1100 using namespace std; typede

POJ 2567 Code the Tree &amp; POJ 2568 Decode the Tree Prufer序列

题目大意:2567是给出一棵树,让你求出它的Prufer序列.2568时给出一个Prufer序列,求出这个树. 思路:首先要知道Prufer序列.对于任意一个无根树,每次去掉一个编号最小的叶子节点,并保存这个节点所连接的节点所得到的序列就是这棵树的Prufer序列.这个序列有十分优雅的性质,它能与无根树一一对应.因此,两个标号一样的无根树得到的Prufer序列也一定是一样的.此外,设一个节点的度数是d[i],那么他会在Prufer序列中出现d[i] - 1次. 2567:记录每一个节点的度,按照

Prufer序列

Prufer序列 构造与转换 树->序列 步骤:(是树,而不是森林) ①.找到当前度数最小的点x(相同的取标号小的) ②.删除x及其边.将所有与x相邻的点加入当前prufer序列后面. 不断重复①.②直到图中只有两个点. 序列->树 步骤:(保证树原本序号为排列,设G={1..n}) ①.找到G在Prufer序列中未出现的最小数x ②.x向Prufer序列首项y连边,然后将x从G中删除,将Prufer首项删除(只删一个). 不断重复①.②直到G中只有两个点,连一条边. 性质 设树中每个点度数为

BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度

题目大意:给定一棵n个节点的树的节点的度数,其中一些度数无限制,求可以生成多少种树 Prufer序列 把一棵树进行以下操作: 1.找到编号最小的叶节点,删除这个节点,然后与这个叶节点相连的点计入序列 2.反复进行1,直到这棵树只剩下两个节点时,退出 比如说这个图(来自度受百科) 最小叶节点为2,删除2,将3计入序列 最小叶节点为4,删除4,将5计入序列 最小叶节点为5,删除5,将1计入序列 最小叶节点为1,删除1,将3计入序列 图中只剩下两个节点,退出 于是得到这棵树的Prufer序列为{3,5

【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)

1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即

BZOJ 1211 HNOI2004 树的计数 Prufer序列

题目大意:给定一棵树中所有点的度数,求有多少种可能的树 Prufer序列,具体参考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每个数分解质因数,把质因数的次数相加相减,然后再乘起来 注意此题无解需要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--居然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostrea

【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp