13机器学习实战之PCA

降维技术

对数据进行降维有如下一系列的原因:

  1. 使得数据集更容易使用
  2. 降低很多算法的计算开销
  3. 去除噪音
  4. 使得结果易懂

在以下3种降维技术中, PCA的应用目前最为广泛,因此本章主要关注PCA。

    1. 主成分分析(Principal Component Analysis, PCA)
    • 通俗理解:就是找出一个最主要的特征,然后进行分析。
    • 在PCA中,数据集从原始坐标系转换为新的坐标系。新的坐标系选择由数据本身决定。第一个新轴选择数据中方差最大的方向。第二轴与第一轴正交,且具有最大方差的方向。对于原始数据中的所有特性,都要重复这个过程。我们会发现大多数方差都包含在前几个坐标轴中,因此,我们可以忽略其余的坐标轴,并减少数据的维数。
    • 例如: 考察一个人的智力情况,就直接看数学成绩就行(存在:数学、语文、英语成绩)
    1. 因子分析(Factor Analysis)
    • 通俗理解:将多个实测变量转换为少数几个综合指标。它反映一种降维的思想,通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性
    • 例如: 考察一个人的整体情况,就直接组合3样成绩(隐变量),看平均成绩就行(存在:数学、语文、英语成绩)
    • 应用的领域:社会科学、金融和其他领域
    • 在因子分析中,我们
      • 假设观察数据的成分中有一些观察不到的隐变量(latent variable)。
      • 假设观察数据是这些隐变量和某些噪音的线性组合。
      • 那么隐变量的数据可能比观察数据的数目少,也就说通过找到隐变量就可以实现数据的降维。
    1. 独立成分分析(Independ Component Analysis, ICA)
    • 通俗理解:ICA 认为观测信号是若干个独立信号的线性组合,ICA 要做的是一个解混过程。
    • 例如:我们去ktv唱歌,想辨别唱的是什么歌曲?ICA 是观察发现是原唱唱的一首歌【2个独立的声音(原唱/主唱)】。
    • ICA 是假设数据是从 N 个数据源混合组成的,这一点和因子分析有些类似,这些数据源之间在统计上是相互独立的,而在 PCA 中只假设数据是不 相关(线性关系)的。
    • 同因子分析一样,如果数据源的数目少于观察数据的数目,则可以实现降维

原文地址:https://www.cnblogs.com/xinmomoyan/p/10635380.html

时间: 2024-10-31 23:17:04

13机器学习实战之PCA的相关文章

机器学习实战之PCA

1.  向量及其基变换 1.1 向量内积 (1)两个维数相同的向量的内积定义如下: 内积运算将两个向量映射为一个实数. (2) 内积的几何意义 假设A\B是两个n维向量, n维向量可以等价表示为n维空间中的一条从原点发射的有向线段, 为方便理解, 在这里假设A和B都是二维向量.A=(x1,y1) , B=(x2,y2),在二维平面上A/B可以用两条发自原点的有向线段表示,如下图: 在上图中,从A点向B所在的直线引一条垂线.垂线与B的交点叫A在B上的投影.A与B的夹角是a,则投影的矢量长度为 *

机器学习实战 10-PCA

1 先备知识 1.1 一些统计学认识 方差: 用来描述样本偏离中心程度的量 协方差:用来描述两变量 X,Y 相互关系的量,协方差越大,对彼此影响越大,协方差等于0,两者独立 协方差矩阵:  如果一组样本 y1,.......ym ,每个样本是 n 维行向量,则这组样本的协方差矩阵为: 注意:矩阵中的 x1,......xn ,指的是上面m个样本的每一维值,则 xn 为 m 维列向量. 理解:由 m 个样本确定的 n 维空间,协方差矩阵的每一列表示的是所有维对某一维分别影响值(即相关性),描述这个

【机器学习实战】Machine Learning in Action 代码 视频 项目案例

MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素

机器学习实战

机器学习实战ByMatlab(1):KNN算法 KNN 算法其实简单的说就是"物以类聚",也就是将新的没有被分类的点分类为周围的点中大多数属于的类.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本的特征空间中最为临近(欧式距离进行判断)的K个点大都属于某一个类,那么该样本就属于这个类.这就是物以类聚的思想. 当然,实际中,不同的K取值会影响到分类效果,并且在K个临近点的选择中,都不加意外的认为这K个点都是已经分类好的了,否则该算法也就失去了物以类聚的意义了. KNN

机器学习实战 [Machine learning in action]

内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. <机器学习实战>主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.AdaBoost集成方法.基于树的回归算法和分类回归树(CART)算法等.第三部分则重点介绍无监督

机器学习实战笔记(Python实现)-03-朴素贝叶斯

--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------

Spark机器学习实战视频

深入浅出Spark机器学习实战(用户行为分析) 课程观看地址:http://www.xuetuwuyou.com/course/144 课程出自学途无忧网:http://www.xuetuwuyou.com 一.课程目标  熟练掌握SparkSQL的各种操作,深入了解Spark内部实现原理  深入了解SparkML机器学习各种算法模型的构建和运行  熟练Spark的API并能灵活运用  能掌握Spark在工作当中的运用 二.适合人群  适合给,有java,scala基础,想往大数据spark机器

决策树代码《机器学习实战》

22:45:17 2017-08-09 KNN算法简单有效,可以解决很多分类问题.但是无法给出数据的含义,就是一顿计算向量距离,然后分类. 决策树就可以解决这个问题,分类之后能够知道是问什么被划分到一个类.用图形画出来就效果更好了,这次没有学哪个画图的,下次. 这里只涉及信息熵的计算,最佳分类特征的提取,决策树的构建.剪枝没有学,这里没有. 1 # -*- oding: itf-8 -*- 2 3 ''' 4 function: <机器学习实战>决策树的代码,画图的部分没有写: 5 note:

python机器学习实战(三)

python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html  前言 这篇博客是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件的分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. 操作系统:ubuntu14.04 运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码,机器学习(周志华) not