hdu 4091 线性规划

分析转自:http://blog.csdn.net/dongdongzhang_/article/details/7955136

题意 :  背包能装体积为N,  有两种宝石, 数量无限, 不能切割。  分别为 size1   value 1 size2 value2

问背包能装最大的价值?

思路 : 线性规划问题。  有一组坑爹数据  100 3 3 7 7   一般的会输出 99     但是结果是 100  各10颗

线性规划知识, x, y 分别为 取两种宝石的数量   目标函数 : z = v1 * x + v 2 * y;      K = -(v1 / v2);

1.   x >= 0;

2.   y >= 0;

3.   s1 * x + s2 + y <= N;   k = - (s1 / s2);

若  abs(K)  > abs (k)  那么 将相交与B。   若abs(K) ==  abs(k)  整条直线都可以。 若 abs(K) < abs(k) 相交与A

其实   abs(K) = v1 / v2  >  abs(k) = s1 / s2   正好是 价值比的比较,   v1 / s1 > v2 / s2    ,v1价值大, 就应该  x  大些, 取1宝石多些。

同理  价值相同  就应该 x, y 取什么都可以,  v2 价值大, 就应该 y 大些,  取2宝石多些。

但是  宝石不能切割, 所以。 就形成了一个区域, 在最优解附近。 所以区域附近的点 需要枚举。

不过有一个不变的是, 在两宝石的体积的最小公倍数内, 肯定取价值大。

而在最小公倍外的,就要分别枚举。 不能盲目的取价值大。

比如一个例子,   20 4 5 6 8   答案是 26  = 2 * 5 + 2 * 8。  若只取价值大的, 会装不满。 没取到最优解。

4 与 6 的最小公倍数是 12.  那每一个12的体积  就应该取  2个  宝石2   因为宝石2价值大。

剩余的8 就有取枚举, 0 * 5 + 1 * 6 , 或者  1 * 5 + 0 * 6,  或者 2 * 5 + 0 * 6   那么就取2个宝石1.  就能装满了, 并且价值最大。

但是 如果是 15 4 5 6 8 的话,  那么按照这方法就会输出   16   只能取到  2个 宝石2  剩余3体积, 不能取到任意宝石。

答案应该是 18 = 2 * 5 + 1 * 8,   少取一个宝石2,腾出6体积,并 利用剩余的3体积的2体积 取两颗宝石1,价值更大。

所以,面对这问题。  我们就应该至少腾出一个公倍数的空间才枚举。  不然就会出错。

 1 #include<stdio.h>
 2 #include<algorithm>
 3 using namespace std;
 4 long long gcd(long long da,long long xiao)
 5 {
 6     long long temp;
 7     while(xiao!=0)
 8     {
 9         temp=da%xiao;
10         da=xiao;
11         xiao=temp;
12     }
13     return da;
14 }
15 int main()
16 {
17     int iCase=0;
18     int T;
19     scanf("%d",&T);
20     long long N,S1,V1,S2,V2;
21     while(T--)
22     {
23         iCase++;
24         scanf("%I64d%I64d%I64d%I64d%I64d",&N,&S1,&V1,&S2,&V2);
25         long long tmp=S1*S2/gcd(S1,S2);
26         long long res;
27         long long tt=N/tmp;
28         N=N%tmp;
29         if(tt)
30         {
31             tt--;
32             N+=tmp;
33         }
34         res=max((tt)*(tmp/S1)*V1,(tt)*(tmp/S2)*V2);
35         long long res2=0;
36         if(S2>S1)
37         {
38             long long t;
39             t=S1;S1=S2;S2=t;
40             t=V1;V1=V2;V2=t;
41         }
42         for(int i=0;i<=N/S1;i++)
43         {
44             if(res2<i*V1+(N-i*S1)/S2*V2)res2=i*V1+(N-i*S1)/S2*V2;
45         }
46         res+=res2;
47         printf("Case #%d: %I64d\n",iCase,res);
48     }
49     return 0;
50 }
时间: 2024-10-03 13:38:38

hdu 4091 线性规划的相关文章

hdu 4091 Zombie’s Treasure Chest 贪心+枚举

转自:http://blog.csdn.net/a601025382s/article/details/12308193 题意: 输入背包体积n,绿宝石体积s1,价值v1,蓝宝石体积s2,价值v2,宝石数目无限,问背包里能放下的最大价值? 题解: 看过去很像完全背包,可数据很大(虽然没给出,也能猜到,不然太水了),所以不能用背包求.又只有两种物品,想到了贪心,将价值与体积比大(称为价值比)的优先放入.但体积限制,这样还不可以,还需要枚举减少价值比大的宝石个数,是否可以增大所求价值.又我们可以知道

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]

题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=6203] 题意 :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点. 题解 :求每个点对的LCA,然后根据LCA的深度排序.从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1. #include<Bits/stdc++.h> using namespace std;

HDU 5542 The Battle of Chibi dp+树状数组

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5542 题意:给你n个数,求其中上升子序列长度为m的个数 可以考虑用dp[i][j]表示以a[i]结尾的长度为j的上升子序列有多少 裸的dp是o(n2m) 所以需要优化 我们可以发现dp的第3维是找比它小的数,那么就可以用树状数组来找 这样就可以降低复杂度 #include<iostream> #include<cstdio> #include<cstring> #include

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

[hdu 2102]bfs+注意INF

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 感觉这个题非常水,结果一直WA,最后发现居然是0x3f3f3f3f不够大导致的--把INF改成INF+INF就过了. #include<bits/stdc++.h> using namespace std; bool vis[2][15][15]; char s[2][15][15]; const int INF=0x3f3f3f3f; const int fx[]={0,0,1,-1};

HDU 3555 Bomb (数位DP)

数位dp,主要用来解决统计满足某类特殊关系或有某些特点的区间内的数的个数,它是按位来进行计数统计的,可以保存子状态,速度较快.数位dp做多了后,套路基本上都差不多,关键把要保存的状态给抽象出来,保存下来. 简介: 顾名思义,所谓的数位DP就是按照数字的个,十,百,千--位数进行的DP.数位DP的题目有着非常明显的性质: 询问[l,r]的区间内,有多少的数字满足某个性质 做法根据前缀和的思想,求出[0,l-1]和[0,r]中满足性质的数的个数,然后相减即可. 算法核心: 关于数位DP,貌似写法还是

HDU 5917 Instability ramsey定理

http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后总的子集数目是2^n,减去不合法的,暴力枚举即可. 选了1个肯定不合法,2个也是,3个的话C(n, 3)枚举判断,C(n, 4), C(n, 5) #include <bits/stdc++.h> #define IOS ios::sync_with_stdio(false) using name

hdu 6166 Senior Pan

地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6166 题目: Senior Pan Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 245    Accepted Submission(s): 71 Problem Description Senior Pan fails i

2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/7398272.html 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i-1][1] + dp[i-1][0] + 1,dp[i][1] = dp[i-1][1] 如果第i个字符为1,则dp[i][1