Levenshein distance最小编辑距离算法实现

Levenshein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致。该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式。

其中d[i-1,j]+1代表字符串s2插入一个字母,d[i,j-1]+1代表字符串s1删除一个字母,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项。

算法实现(Python):

假设两个字符串分别为s1,s2,其长度分别为m,n,首先申请一个(m+1)*(n+1)大小的矩阵,然后将第一行和第一列初始化,d[i,0]=i,d[0,j]=j,接着就按照公式求出矩阵中其他元素,结束后,两个字符串之间的编辑距离就是d[n,m]的值,代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'xanxus'
s1, s2 = raw_input('String 1:'), raw_input('String 2:')
m, n = len(s1), len(s2)
colsize, matrix = m + 1, []
for i in range((m + 1) * (n + 1)):
    matrix.append(0)
for i in range(colsize):
    matrix[i] = i
for i in range(n + 1):
    matrix[i * colsize] = i
for i in range(n + 1)[1:n + 1]:
    for j in range(m + 1)[1:m + 1]:
        cost = 0
        if s1[j - 1] == s2[i - 1]:
            cost = 0
        else:
            cost = 1
        minValue = matrix[(i - 1) * colsize + j] + 1
        if minValue > matrix[i * colsize + j - 1] + 1:
            minValue = matrix[i * colsize + j - 1] + 1
        if minValue > matrix[(i - 1) * colsize + j - 1] + cost:
            minValue = matrix[(i - 1) * colsize + j - 1] + cost
        matrix[i * colsize + j] = minValue
print matrix[n * colsize + m]

Levenshein distance最小编辑距离算法实现,布布扣,bubuko.com

时间: 2024-11-06 04:39:14

Levenshein distance最小编辑距离算法实现的相关文章

C#实现Levenshtein distance最小编辑距离算法

Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式. 其中d[i-1,j]+1代表字符串s2插入一个字母才与s1相同,d[i,j-1]+1代表字符串s1删除一个字母才与s2相同,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项. 算法实现(C#): 假设两个

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家V

Minimum edit distance(levenshtein distance)(最小编辑距离)初探

最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如将kitten一字转成sitting: sitten(k→s) sittin(e→i) sitting(→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. Thewords `computer' and `commuter' are

Levenshtein distance 编辑距离算法

这几天再看 virtrual-dom,关于两个列表的对比,讲到了 Levenshtein distance 距离,周末抽空做一下总结. Levenshtein Distance 介绍 在信息理论和计算机科学中,Levenshtein 距离是用于测量两个序列之间的差异量(即编辑距离)的度量.两个字符串之间的 Levenshtein 距离定义为将一个字符串转换为另一个字符串所需的最小编辑数,允许的编辑操作是单个字符的插入,删除或替换. 例子 ‘kitten’和’sitten’之间的 Levensht

计算两组标签相似度算法——levenshtein distance 编辑距离算法

标签在数据分析中起到很重要的作用,给用户打标签,给商品打标签,给新闻打标签,好的标签可以为我们后期分析数据时提供很大的便利.有时我们需要计算两个对象之间标签的相似度.目前学习的算法是levenshtein distance 编辑距离算法. 代码示例: //标签相似度 public static double levenshtein(String s1, String s2) { System.out.println("levenshtein str1:"+s1+" str2:

最小编辑距离(Minimum edit distance)

最小编辑距离是计算欧式距离的一种方法,可以被用于计算文本的相似性以及用于文本纠错,因为这个概念是俄罗斯科学家 Vladimir Levenshtein 在1965年提出来的,所以编辑距离又称为Levenshtein距离. 简单的理解就是将一个字符串转换到另一个字符串所需要的代价(cost),付出的代价越少表示两个字符串越相似,编辑距离越小,从一个字符串转换到另一个字符串简单的归纳可以有以下几种操作,1.删除(delete)2.插入(insert)3.修改(update),其中删除和插入的代价可以

通俗解析莱文斯坦距离(Levenshtein Distance)计算原理(最小编辑距离)

[版权声明]:本文章由danvid发布于http://danvid.cnblogs.com/,如需转载或部分使用请注明出处 最近看到一些动态规划的东西讲到莱文斯坦距离(编辑距离)的计算,发现很多都讲的不是很清楚,比较难理解,自己思考过后重新给大家讲解一下: 维基百科解析:莱文斯坦距离,又称Levenshtein距离,是编辑距离的一种.指两个字串之间,由一个转成另一个所需的最少编辑操作次数.允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.例如将kitten转成sittin

编辑距离算法 (二)摘自网络

/** * 编辑距离算法,首先由俄国科学家Levenshtein提出的,又叫Levenshtein Distance * 主要用来计算从原串(s)转换到目标串(t)所需要的最少的插入,删除和替换的数目, 在NLP中应用比较广泛,同时也常用来计算你对原文所作的改动数 */ public class Levenshtein { private int compare(String str, String target) { int d[][]; // 矩阵 int n = str.length();