poj2924--F - Knights of the Round Table(圆桌骑士,经典连通分量)

F - Knights of the Round Table

Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d
& %I64u

Submit Status

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced
an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere,
while the rest are busy doing heroic deeds around the country.

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying
the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of
    votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that
there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons).
If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights
of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines
contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ).

The input is terminated by a block with n = m = 0 .

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled.

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, ‘scanf‘ recommended to avoid TLE.

题目大意:有n个骑士,m对人相互讨厌,现在要求相互讨厌的人不能坐一起开会,每桌上必须是>=3的奇数个人,最少几个人不能去参加任何一个会议,(会议可以不同的天举行)。

连接所有可能的边,将相互讨厌的去掉,剩余的就是可以相邻的坐在一起的,保证奇数个,就要求图中的双连通分量,不能是二分图,所以找出割点,将割点,将每一个双连通分量的点存下,用染色的方法,判断是不是二分图,最后得到要求的值

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector>
using namespace std;
#define maxn 2200
struct node{
    int u , v ;
    int next ;
} edge[2100000];
int head[maxn] , cnt , vis[2100000] ;
int temp[maxn] , color[maxn] ;
int dnf[maxn] , low[maxn] , time ;
int Map[maxn][maxn] , ans[maxn] ;
stack <int> sta;
vector <int> vec[maxn] ;
int num ;
void init()
{
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(Map,0,sizeof(Map));
    memset(dnf,0,sizeof(dnf));
    memset(low,0,sizeof(low));
    memset(temp,0,sizeof(temp));
    memset(ans,0,sizeof(ans));
    cnt = time = num = 0 ;
}
void add(int u,int v)
{
    while( !sta.empty() ) sta.pop();
    edge[cnt].u = u ; edge[cnt].v = v ;
    edge[cnt].next = head[u] ; head[u] = cnt++ ;
    edge[cnt].u = v ; edge[cnt].v = u ;
    edge[cnt].next = head[v] ; head[v] = cnt++ ;
}
void tarjan(int u)
{
    dnf[u] = low[u] = ++time ;
    int i , j , v ;
    for(i = head[u] ; i != -1 ; i = edge[i].next)
    {
        if(vis[i]) continue ;
        vis[i] = vis[i^1] = 1 ;
        v = edge[i].v ;
        if( !dnf[v] )
        {
            sta.push(i) ;
            tarjan(v);
            low[u] = min( low[u],low[v] ) ;
            if( low[v] >= dnf[u] )
            {
                num++ ;
                vec[num].clear();
                while(1)
                {
                    j = sta.top();
                    sta.pop();
                    vec[num].push_back(edge[j].u);
                    vec[num].push_back(edge[j].v);
                    if( edge[j].u == u && edge[j].v == v )
                        break;
                }
            }
        }
        else if( dnf[v] < dnf[u] )
        {
            sta.push(i) ;
            low[u] = min( low[u],dnf[v] );
        }
    }
}
int dey(int u,int k)
{
    int i ,v ;
    for(i = head[u] ; i != -1 ; i = edge[i].next)
    {
        v = edge[i].v ;
        if( temp[v] != k ) continue ;
        if( color[v] == color[u] )
            return 0 ;
        if( !color[v] )
        {
            color[v] = 3 - color[u] ;
            if( !dey(v,k) ) return 0 ;
        }
    }
    return 1 ;
}
int main()
{
    int n , m , u , v , i , j ;
    while(scanf("%d %d", &n, &m) && (n+m) != 0 )
    {
        init();
        while(m--)
        {
            scanf("%d %d", &u, &v);
            Map[u][v] = Map[v][u] = 1 ;
        }
        for(i = 1 ; i <= n ; i++)
            for(j = i+1 ; j <= n ; j++)
                if( !Map[i][j] )
                    add(i,j);
        for(i = 1 ; i <= n ; i++)
            if( !dnf[i] )
                tarjan(i);
        for(i = 1 ; i <= num ; i++)
        {
            if( vec[i].size() < 3 ) continue ;
            for(j = 0 ; j < vec[i].size() ; j++)
                temp[ vec[i][j] ] = i ;
            memset(color,0,sizeof(color));
            u = vec[i][0] ;
            color[u] = 1 ;
            if( !dey(u,i) )
            {
                for(j = 0 ; j < vec[i].size(); j++)
                    ans[ vec[i][j] ] = 1 ;
            }
        }
        m = n ;
        for(i = 1 ; i <= n ; i++)
            if( ans[i] ) m-- ;
        printf("%d\n", m);
    }
    return 0;
}
时间: 2024-11-05 11:49:02

poj2924--F - Knights of the Round Table(圆桌骑士,经典连通分量)的相关文章

POJ 2942 Knights of the Round Table (点-双连通分量 + 交叉法染色判二分图)

POJ 2942 Knights of the Round Table 链接:http://poj.org/problem?id=2942 题意:亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突,并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: 1. 相互憎恨的两个骑士不能坐在直接相邻的2个位置: 2. 出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果. 如果出现有某些骑士无法出席所有会议(例如这个骑士憎恨所有的其他骑士),则亚瑟王为了世界和

UVALive 3523 Knights of the Round Table(二分图+双连通分量)

Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King

UVA 1364 - Knights of the Round Table (找双连通分量 + 二分图染色法判断)

都特么别说话,我先A了这道题! 卧槽啊.....! 题意来自 kuangbin: 亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突, 并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: 1.  相互憎恨的两个骑士不能坐在直接相邻的2个位置: 2.  出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果. 注意:1.所给出的憎恨关系一定是双向的,不存在单向憎恨关系. 2.由于是圆桌会议,则每个出席的骑士身边必定刚好有2个骑士. 即每个骑士的座位两边都

UVALive - 3523 Knights of the Round Table(无向图的双连通分量)

题目大意:有n个骑士经常举行圆桌会议,每次圆桌会议至少要有3个骑士参加(且每次参加的骑士数量是奇数个),且所有互相憎恨的骑士不能坐在圆桌旁的相邻位置,问有多少个骑士不可能参加任何一个会议 解题思路:以骑士为点建立无向图G.如果两个骑士可以相邻(即他们并不互相憎恨),即可连一条边. 则题目就转化为求不在任何一个简单奇圈上的结点个数 首先,圈就是一个双连通的分量,所以第一件事就是将所有的双连通分量求出来,接着再判定这个双连通分量是不是奇圈 奇圈的判定就是用二分图染色判定,如果某个圈能被二分图染色,那

UVALive 3523 Knight of Round Table 圆桌骑士 (无向图点双连通分量)

由于互相憎恨的骑士不能相邻,把可以相邻的骑士连上无向边,会议要求是奇数,问题就是求不再任意一个简单奇圈上的结点个数. tarjan直接套以前写的,结果就错了,要特别注意把边加入栈的时间...还不是很理解这个算法 #include<bits/stdc++.h> using namespace std; #define bug(x) cout<<#x<<'='<<x<<endl; const int maxv = 1000+5; const int

poj 2942 Knights of the Round Table(无向图的双连通分量+二分图判定)

#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #

POJ 2942 Knights of the Round Table (点双连通分量,偶图判定)

题意:多个骑士要开会,3人及以上才能凑一桌,其中部分人已经互相讨厌,肯定不坐在同一桌的相邻位置,而且一桌只能奇数个人才能开台.给出多个人的互相讨厌图,要求多少人开不成会(注:会议不要求同时进行,一个人开多个会不冲突)? 分析: 给的是互相讨厌的图,那么转成互相喜欢的吧,扫一遍,如果不互相讨厌就认为互相喜欢,矩阵转邻接表先. 有边相连的两个点代表能坐在一块.那么找出一个圈圈出来,在该圈内的点有奇数个人的话肯定能凑成1桌.圈圈?那就是简单环了,跟点双连通分量的定义好像一样:每个点都能同时处于1个及以

POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Accepted: 4126 Description Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the oth

UvaLive3523 Knights of the Round Table(点双联通分量+二分图染色)

UvaLive3523 Knights of the Round Table 参考了Kuangbin巨的题解. /* POJ 2942 Knights of the Round Table 亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突, 并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: 1. 相互憎恨的两个骑士不能坐在直接相邻的2个位置: 2. 出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果. 注意:1.所给出的憎恨关系一定是双向的,不