POJ1734 Sightseeing trip【Floyd】【最小环】

Sightseeing trip

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 5038
Accepted: 1930

Special Judge

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary
to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers
y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads
on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing
route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers:
the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string ‘No solution.‘ in case there isn‘t any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route
in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7

1 4 1

1 3 300

3 1 10

1 2 16

2 3 100

2 5 15

5 3 20

Sample Output

1 3 5 2

Source

CEOI 1999

题目大意:有个旅游公司要开发一条新的旅游路线,要求这条路尽可能短,但是又不能只包含

两个城市,并且旅游途中不能回到之前去过的城市,只能去往下一个没去过的城市,旅游结束

的时候要回到最开始的城市,要求求出整个旅游路线经过的城市。

思路:给N个点,M条边建图。路程最短,且要形成环,其实就是求最小环问题。可以用Floyd

来做。用Dist[i][j]存储从i到j的最短路径,但是 i != j,因为最少要有3个点(加上k至少3个点)。

用pre[i][j]来表示从点i到点j的路径中j点前边的点。判定最小环时,点i到j的路径再加上点k就是

当前的最小环,利用pre[i][j]从点j反向找到点i,在加上k就是最小环了。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 110;
const int INF = 0xffffff0;
int temp,Map[MAXN][MAXN],Dist[MAXN][MAXN],pre[MAXN][MAXN],ans[MAXN*3];

void Solve(int i,int j,int k)
{
    temp = 0;   //回溯,存储最小环
    while(i != j)
    {
        ans[temp++] = j;
        j = pre[i][j];
    }
    ans[temp++] = i;
    ans[temp++] = k;
}
void Floyd(int N)
{
    for(int i = 1; i <= N; ++i)
        for(int j = 1; j <= N; ++j)
        {
            Dist[i][j] = Map[i][j];
            pre[i][j] = i;
        }
    int MinCircle = INF;
    for(int k = 1; k <= N; ++k)
    {
        for(int i = 1; i <= N; ++i)
        {
            for(int j = 1; j <= N; ++j)
            {
                if(i != j && Dist[i][j] != INF && Map[i][k] != INF && Map[k][j] != INF
                   && Dist[i][j] + Map[i][k] + Map[k][j] < MinCircle)
                {
                    MinCircle = min(MinCircle, Dist[i][j] + Map[i][k] + Map[k][j]);
                    Solve(i,j,k);
                }
            }
        }

        for(int i = 1; i <= N; ++i)
        {
            for(int j = 1; j <= N; ++j)
            {
                if(Dist[i][k] != INF && Dist[k][j] != INF &&
                   Dist[i][k] + Dist[k][j] < Dist[i][j])
                {
                    Dist[i][j] = Dist[i][k] +Dist[k][j];
                    pre[i][j] = pre[k][j];  //记录点i到点j的路径上,j前边的点
                    //pre[j][i] = pre[k][i];
                }
            }
        }
    }

    if(MinCircle == INF)
    {
        printf("No solution.\n");
        return;
    }

    for(int i = 0;i < temp; ++i)
        if(i != temp-1)
            printf("%d ",ans[i]);
        else
            printf("%d\n",ans[i]);
}
int main()
{
    int N,M,u,v,w;
    while(~scanf("%d%d",&N,&M))
    {
        for(int i = 1; i <= N; ++i)
            for(int j = 1; j <= N; ++j)
                Map[i][j] = INF;
        for(int i = 0; i < M; ++i)
        {
            scanf("%d%d%d",&u,&v,&w);
            if(w < Map[u][v])
                Map[u][v] = Map[v][u] = w;
        }
        Floyd(N);
    }

    return 0;
}
时间: 2024-12-05 04:34:20

POJ1734 Sightseeing trip【Floyd】【最小环】的相关文章

POJ-1734 Sightseeing trip(floyd求最小环)

Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6491   Accepted: 2486   Special Judge Description There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attra

POJ 1734 Sightseeing trip (Floyd 最小环+记录路径)

Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5040   Accepted: 1932   Special Judge Description There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attra

URAL1004 Sightseeing Trip Floyd 最小环

题意:求有权无向图的最小环,环至少包括三个点. 思路: 设map[i,j]表示i到j的的距离.输入有重边,在处理输入的时候只保存最短边. 取环中一个点k,左右点是ij则map[i,k]和map[k,j]是固定的不能变,可改变的是没有加入k点的i,j之间的最短路,设为dist[i,j].那么最短环的长度表示为dist[i,j]+map[i,k]+map[k,j]. Floyd的最外层循环为k时,最短路还没有用k和更新ij之间的最短路,恰好符合要求.所以在还没有用k更新ij之间的最短路之前更新环,每

POJ1734 Sightseeing trip 【Floyd】+【最小环】+【路径记录】

Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4830   Accepted: 1857   Special Judge Description There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attra

poj1734 Sightseeing trip

Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6919   Accepted: 2646   Special Judge Description There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attra

URAL 1004 Sightseeing Trip(最小环)

Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this a

【POJ1734】Sightseeing Trip 无向图最小环

题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K 号节点时,\(d[i][j]\) 中记录着经过前 k-1 个点,从 i 到 j 的最短距离.因此,可以依次考虑每一个结构:\(\{d[i][j]+G[i][k]+G[k][j] \}\),这便是一个环形结构,每次更新答案贡献即可. 至于路径输出,\(get\_path(int\ i,int\ j)\

1999 Central European Olympiad in Informatics - Sightseeing Trip

算法提示 最小环问题 题目大意 在一张带权无向图上,找出至少含 3 个点且权值和最小的环,并按环上的循序输出环上的点.存在重边,无自环. 做法分析 参考最小环问题,在更新 dist[i][j] 时,记录更新其的点 k,便于回溯路径. 参考代码 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <queue> 5 #include <algorithm> 6

POJ 1734:Sightseeing trip

Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6831 Accepted: 2612 Special Judge Description There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions