原理
使用filebeat来上传日志数据,logstash进行日志收集与处理,elasticsearch作为日志存储与搜索引擎,最后使用kibana展现日志的可视化输出。所以不难发现,日志解析主要还是logstash做的事情。
从上图中可以看到,logstash主要包含三大模块:
- INPUTS: 收集所有数据源的日志数据([源有file、redis、beats等,filebeat就是使用了beats源*);
- FILTERS: 解析、整理日志数据(本文重点);
- OUTPUTS: 将解析的日志数据输出至存储器([elasticseach、file、syslog等);
FILTERS是重点,来看看它常用到的几个插件:
- grok:采用正则的方式,解析原始日志格式,使其结构化;
- geoip:根据IP字段,解析出对应的地理位置、经纬度等;
- date:解析选定时间字段,将其时间作为logstash每条记录产生的时间(若没有指定该字段,默认使用read line的时间作为该条记录时间);
*注意:codec也是经常会使用到的,它主要作用在INPUTS和OUTPUTS中,[提供有json的格式转换、multiline的多行日志合并等
配置文件
一个简单的配置文件:
input { log4j { port => "5400" } beats { port => "5044" } } filter { # 多个过滤器会按声明的先后顺序执行 grok { match => { "message" => "%{COMBINEDAPACHELOG}"} } geoip { source => "clientip" } } output { elasticsearch { action => "index" hosts => "127.0.0.1:9200" # 或者 ["IP Address 1:port1", "IP Address 2:port2", "IP Address 3"] ,支持均衡的写入ES的多个节点,一般为非master节点 index => "logstash-%{+YYYY-MM}" } stdout { codec=> rubydebug } file { path => "/path/to/target/file" } }
场景
1. NodeJS 日志
- 日志格式
$time - $remote_addr $log_level $path - $msg
- 日志内容
2017-03-15 18:34:14.535 - 112.65.171.98 INFO /root/ws/socketIo.js - xxxxxx与ws server断开连接
- filebeat配置(建议filebeat使用rpm安装,以systemctl start filebeat方式启动)
filebeat: prospectors: - document_type: nodejs #申明type字段为nodejs,默认为log paths: - /var/log/nodejs/log #日志文件地址 input_type: log #从文件中读取 tail_files: true #以文件末尾开始读取数据 output: logstash: hosts: ["${LOGSTASH_IP}:5044"] #General Setting name: "server1" #设置beat的名称,默认为主机hostname
- logstash中FILTERS配置
filter { if [type] == "nodejs" { #根据filebeat中设置的type字段,来过滤不同的解析规则 grok{ match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} - %{IPORHOST:clientip} %{LOGLEVEL:level} %{PATH:path} - %{GREEDYDATA:msg}" } } geoip { source => "clientip" #填写IP字段 } } }
- 结果(为方便演示,数据有删减)
- Filter配置讲解
- grok中的match内容:
- key:表示所需解析的内容;
- value:表示解析的匹配规则,提取出对应的字段;
- 解析语法:%{正则模板:自定义字段},其中TIMESTAMP_ISO8601、IPORHOST等都是grok提供的正则模板;
- geoip:通过分析IP值,产生IP对应的地理位置信息;
这里是否发现@timestamp与timestamp不一致,@timestamp表示该日志的读取时间,在elasticsearch中作为时间检索索引。下面讲解Nginx日志时,会去修正这一问题。
2. Nginx 访问日志
- 日志格式
$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" "$http_x_forwarded_for"
- 日志内容
112.65.171.98 - - [15/Mar/2017:18:18:06 +0800] "GET /index.html HTTP/1.1" 200 1150 "http://www.yourdomain.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36" "-"
- filebeat中prospectors的配置
- document_type: nginx paths: - /var/log/nginx/access.log #日志文件地址 input_type: log #从文件中读取 tail_files: true #以文件末尾开始读取数据
- logstash中FILTERS配置
filter { if [type] == "nginx" { grok{ match => { "message" => "%{COMBINEDAPACHELOG}" } } date { match => [ "timestamp" , "dd/MMM/yyyy:HH:mm:ss Z", "ISO8601" ] target => "@timestamp" #可省略 } } }
- 结果
- Filter配置讲解
- grok:
- 是不是很不可思议,上一示例中我们匹配规则写了一长串,这个仅仅一个COMBINEDAPACHELOG就搞定了!
- grok除了提供上面那种基础的正则规则,还对常用的日志(java,http,syslog等)提供的相应解析模板,本质还是那么一长串正则,[详情见grok的120中正则模板;
- date:
- match:数组中第一个值为要匹配的时间字段,后面的n个是匹配规则,它们的关系是or的关系,满足一个即可;
- target:将match中匹配的时间替换该字段,默认替换@timestamp;
目前为止我们解析的都是单行的日志,向JAVA这样的,若果是多行的日志我们又该怎么做呢?
3. JAVA Log4j 日志
- 日志内容
‘2017-03-16 15:52:39,580 ERROR TestController:26 - test: java.lang.NullPointerException at com.test.TestController.tests(TestController.java:22) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.springframework.web.method.support.InvocableHandlerMethod.doInvoke(InvocableHandlerMethod.java:221) at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:137)‘
- filebeat中prospectors的配置
- document_type: tomcat paths: - /var/log/java/log #日志文件地址 input_type: log #从文件中读取 tail_files: true #以文件末尾开始读取数据 multiline: pattern: ^\d{4} match: after negate: true
- logstash中FILTERS配置
filter { if [type] == "tomcat" { grok{ match => { "message" => "%{TIMESTAMP_ISO8601:timestamp} %{LOGLEVEL:level} %{JAVALOGMESSAGE:msg}" } } date { match => [ "timestamp" , "yyyy-MM-dd HH:mm:ss,S", "ISO8601" ] } } }
- 结果
- Filebeat配置讲解
- multiline 合并多行日志:
- pattern:匹配规则,这里指匹配每条日志开始的年份;
- match:有before与after,这里指从该行开始向后匹配;
- negate:是否开始一个新记录,这里指当pattern匹配后,结束之前的记录,创建一条新日志记录;
当然在logstash input中使用codec multiline设置是一样的
- multiline 合并多行日志:
小技巧:关于grok的正则匹配,官方有给出Grok Constructor方法,在这上面提供了debugger、自动匹配等工具,方便大家编写匹配规则
ES Output插件
主要的选项包括:
# action,默认是index,索引文档(logstash的事件)(ES架构与核心概念参考)。 # host,声明ES服务器地址端口 # index,事件写入的ES index,默认是logstash-%{+YYYY.MM.dd},按天分片index,一般来说我们会按照时间分片,时间格式参考http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html。
详情请参考我的另外一篇文章:https://www.cnblogs.com/caoweixiong/p/11791396.html
参考:
https://www.jianshu.com/p/cc8dbd3bb401
原文地址:https://www.cnblogs.com/caoweixiong/p/12576375.html
时间: 2024-10-06 23:26:57