双线性插值算法及需要注意事项

原文博客地址:http://handspeaker.iteye.com/blog/1545126

最近在编程时用到了双线性插值算法,对图像进行缩放。网上有很多这方面的资料,介绍的也算明白。但是,这些文章只介绍了算法,并没有具体说怎么实现以及怎么实现最好,举个例子,你可以按照网上文章的算法自己写一个双线性插值程序,用它对一张图片进行处理,然后再用matlab或者openCV的resize函数对同一张图片进行处理,得到的结果是不一样的,如果源图片较小,效果差距就更大。以下是对于双线性插值的讲解以及上述现象的解释:

1.双线性插值

假设源图像大小为mxn,目标图像为axb。那么两幅图像的边长比分别为:m/a和n/b。注意,通常这个比例不是整数,编程存储的时候要用浮点型。目标图像的第(i,j)个像素点(i行j列)可以通过边长比对应回源图像。其对应坐标为(i*m/a,j*n/b)。

显然,这个对应坐标一般来说不是整数,而非整数的坐标是无法在图像这种离散数据上使用的。双线性插值通过寻找距离这个对应坐标最近的四个像素点,来计算该点的值(灰度值或者RGB值)。如果你的对应坐标是(2.5,4.5),那么最近的四个像素是(2,4)、(2,5)、(3,4),(3,5)。

若图像为灰度图像,那么(i,j)点的灰度值可以通过一下公式计算:

f(i,j)=w1*p1+w2*p2+w3*p3+w4*p4;

其中,pi(i=1,2,3,4)为最近的四个像素点,wi(i=1,2,3,4)为各点相应权值。关于权值的计算,在维基百科和百度百科上写的很明白。

2.存在的问题

这部分的前提是,你已经明白什么是双线性插值并且在给定源图像和目标图像尺寸的情况下,可以用笔计算出目标图像某个像素点的值。当然,最好的情况是你已经用某种语言实现了网上一大堆博客上原创或转载的双线性插值算法,然后发现计算出来的结果和matlab、openCV对应的resize()函数得到的结果完全不一样。

那这个究竟是怎么回事呢?

其实答案很简单,就是坐标系的选择问题,或者说源图像和目标图像之间的对应问题。

按照网上一些博客上写的,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下:

只画了一行,用做示意,从图中可以很明显的看到,如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。

那么,让坐标加1或者选择右下角为原点怎么样呢?很不幸,还是一样的效果,不过这次得到的图像将偏右偏下。

最好的方法就是,两个图像的几何中心重合,并且目标图像的每个像素之间都是等间隔的,并且都和两边有一定的边距,这也是matlab和openCV的做法。如下图:

如果你不懂我上面说的什么,没关系,只要在计算对应坐标的时候改为以下公式即可,

int x=(i+0.5)*m/a-0.5

int y=(j+0.5)*n/b-0.5

instead of

int x=i*m/a

int y=j*n/b

利用上述公式,将得到正确的双线性插值结果

总结:

总结一下,我得到的教训有这么几条。

1.网上的一些资料有的时候并不靠谱,自己还是要多做实验。

2.不要小瞧一些简单的、基本的算法,让你写你未必会写,而且其中可能还藏着一些玄妙。

3.要多动手编程,多体会算法,多看大牛写的源码(虽然有的时候很吃力,但是要坚持看)。

时间: 2024-10-12 21:25:55

双线性插值算法及需要注意事项的相关文章

视频图像处理基础知识0(双线性插值算法进行图像缩放)

双线性插值(说的很明白) 来自:http://www.cnblogs.com/linkr/p/3630902.html http://www.cnblogs.com/linkr/p/3630902.html 双线性插值,这个名字咋一听很高大上的样纸,再在维基百科上一查(见文末,我去,一堆的公式吓死人),像俺这种半文盲,看到公式脑子就懵的类型,真心给跪.虽然看着好复杂,但仔细一看道理再简单不过了,所以还是自己梳理一下好. 双线性插值,顾名思义就是两个方向的线性插值加起来(这解释过于简单粗暴,哈哈)

[转载]双线性插值算法进行图像缩放及性能效果优化

原文地址:双线性插值算法进行图像缩放及性能效果优化 一)转自http://handspeaker.iteye.com/blog/1545126 最近在编程时用到了双线性插值算法,对图像进行缩放.网上有很多这方面的资料,介绍的也算明白.但是,这些文章只介绍了算法,并没有具体说怎么实现以及怎么实现最好,举个例子,你可以按照网上文章的算法自己写一个双线性插值程序,用它对一张图片进行处理,然后再用matlab或者openCV的resize函数对同一张图片进行处理,得到的结果是不一样的,如果源图片较小,效

双线性插值算法的详细总结

       最近在做视频拼接的项目,里面用到了图像的单应性矩阵变换,在最后的图像重映射,由于目标图像的坐标是非整数的,所以需要用到插值的方法,用的就是双线性插值,下面的博文主要是查看了前辈的博客对双线性插值算法原理进行了一个总结,在这里也感谢一些大牛的博文. http://www.cnblogs.com/linkr/p/3630902.html http://www.cnblogs.com/funny-world/p/3162003.html 双线性插值 假设源图像大小为mxn,目标图像为ax

图像缩放——双线性插值算法

在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值.如果选择一个坐标系统使得  的四个已知点坐标分别为 (0, 0).(0, 1).(1, 0) 和 (1, 1),那么插值公式就可以化简为: 用矩阵运算来表示的话就是: 图像的空间变换,也称几何变换或几何运算,包括图像的平移.旋转.镜像变换.转置.缩放等.空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的颜色值与目标图像上(x,y)处

双线性插值算法原理 python实现

码字不易,如果此文对你有所帮助,请帮忙点赞,感谢! 一. 双线性插值法原理: ① 何为线性插值? 插值就是在两个数之间插入一个数,线性插值原理图如下: 在位置 x 进行线性插值,插入的值为f(x) ↑  ② 各种插值法: 插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为: srcX = dstX * (srcWidth/dstWidth) srcY = dstY * (srcHeight/dstHeight) (dstX,

OpenCV ——双线性插值(Bilinear interpolation)

1,原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛. 越是简单的模型越适合用来举例子,我们就举个简单的图像:3*3 的256级灰度图.假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):       234 38 22       67 44 12       89 65 63 这 个矩阵中,元素坐标(x,y)是这样

三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法

线性插值 先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略): y?y0x?x0=y1?y0x1?x0 y=x1?xx1?x0y0+x?x0x1?x0y1 上面比较好理解吧,仔细看就是用x和x0,x1的距离作为一个权重,用于y0和y1的加权.双线性插值本质上就是在两个方向上做线性插值. 双线性插值 在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值

图像缩放算法

图像缩放算法较多,下面仅以最邻近插值算法和双线性插值算法作介绍. 如下图1所示,表示原始图像和缩放以后的图像. 图1 图像缩放(原始图像à缩放图像) 图像缩放就是将原始图像中的点经过某一算法映射到目标图像的点的行为,即要找到目标图像中的点p1对应在原始图像中点p0,简单而言就是找点p0. 假设: 原始图像src的分辨率为(srcW * srcH): 目标图像dst的分辨率为(dstW * dstH). 那么: 原始图像宽与目标图像宽的比例 原始图像高与目标图像高的比例 由 所以,原始图像中的点p

数字视频基础(四)

3. 常用视频处理算法 3.1 图像的缩放 所谓图像缩放就是创立新的像素位置并对这些新位置赋灰度值.比如,有一副大小为500x500像素的图像,想把它放大1.5倍,也即750x750像素,概念上看,一种最容易的形象化放大方法就是在原始图像上,放一个虚构的750x750的栅格.很显然栅格的间隔小于1个像素,因为,我们在一个较小的图像上去拟合它.为了对覆盖层上的任何电进行灰度赋值,我们在原图像上寻找最靠近的像素并把它的灰度付给栅格上的新像素.当对覆盖栅格的全部点都赋完值之后,就得到放大的图像.这种灰