UVa10653.Prince and Princess

题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1576

13935381 10635 Prince and Princess Accepted C++ 0.095 2014-07-24 03:41:18


Prince and Princess
Input: Standard Input

Output: Standard Output

Time Limit: 3 Seconds

In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below:

Prince stands in square 1, make p jumps and finally reach square n*n. He enters a square at most once. So if we use xp to denote the p-th square he enters, then x1, x2, ... xp+1 are all different. Note that x1 = 1 and xp+1 = n*n. Princess does the similar thing - stands in square 1, make q jumps and finally reach square n*n. We use y1, y2 , ... yq+1 to denote the sequence, and all q+1 numbers are different.

Figure 2 belows show a 3x3 square, a possible route for Prince and a different route for Princess.

The Prince moves along the sequence: 1 --> 7 --> 5 --> 4 --> 8 --> 3 --> 9 (Black arrows), while the Princess moves along this sequence: 1 --> 4 --> 3 --> 5 --> 6 --> 2 --> 8 --> 9 (White arrow).

The King -- their father, has just come. "Why move separately? You are brother and sister!" said the King, "Ignore some jumps and make sure that you‘re always together."

For example, if the Prince ignores his 2nd, 3rd, 6th jump, he‘ll follow the route: 1 --> 4 --> 8 --> 9. If the Princess ignores her 3rd, 4th, 5th, 6th jump, she‘ll follow the same route: 1 --> 4 --> 8 --> 9, (The common route is shown in figure 3) thus satisfies the King, shown above. The King wants to know the longest route they can move together, could you tell him?

Input

The first line of the input contains a single integer t(1 <= t <= 10), the number of test cases followed. For each case, the first line contains three integers n, p, q(2 <= n <= 250, 1 <= p, q < n*n). The second line contains p+1 different integers in the range [1..n*n], the sequence of the Prince. The third line contains q+1 different integers in the range [1..n*n], the sequence of the Princess.

Output

For each test case, print the case number and the length of longest route. Look at the output for sample input for details.

 

Sample Input         Output for Sample Input


1

3 6 7

1 7 5 4 8 3 9

1 4 3 5 6 2 8 9


Case 1: 4


解题思路:由于跪在校赛的LCS nlogn算法,所以回来恶补,特意找了一道相同意思的题目。如同此题,简单的LCS类型,但是10^5左右的数据量,如果开滚动dp的话,复杂度O(n^2)会超时。所以应该将LCS问题转化成下标对应的LIS问题,然后再使用LIS的nlogn算法,具体思想是维护一个递增序列,二分找上界,替换元素即可。(感谢DIM神给我讲解此算法)。这样已经足够了。但是说句与此题无关的话,如果数据范围过大,例如到64位级别的数字时,可以使用离散化,继续降低复杂度。膜拜下yeahpeng酱。

 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 #include <cstdlib>
 5 #include <cctype>
 6 #include <algorithm>
 7 #include <numeric>
 8 #include <map>
 9 #include <vector>
10 using namespace std;
11
12 const int N = 250 * 250;
13 map<int, int> check;
14 vector<int> Stack;
15
16 int main () {
17     int T, n, p, q, cur = 0;
18     int s1[N], s2[N];
19     scanf("%d", &T);
20     while (T --) {
21         Stack.clear();
22         check.clear();
23         scanf("%d%d%d", &n, &p, &q);
24         for (int i = 0; i <= p; ++ i) {
25             scanf("%d", &s1[i]);
26             check[s1[i] ] = i + 1;
27         }
28
29         map<int, int> :: iterator it;
30
31         for (int i = 0; i <= q; ++ i) {
32             scanf("%d", &s2[i]);
33             if (check.find(s2[i]) != check.end()) {
34                 s2[i] = check[s2[i]];
35             } else {
36                 s2[i] = 0;
37             }
38         }
39         /*
40         for (int i = 0 ; i <= p; ++ i) {
41             cout << check[s1[i] ] << " ";
42         }
43         cout << endl;
44         *//*
45         for (int i = 0 ; i <= q; ++ i) {
46             cout << s2[i] << " ";
47         }
48         cout << endl;
49 */
50         for (int i = 0; i <= q; ++ i) {
51             if (Stack.empty() || s2[i] > Stack[Stack.size() - 1]) {
52                 Stack.push_back(s2[i]);
53             } else {
54                 vector<int> :: iterator it = lower_bound(Stack.begin(), Stack.end(), s2[i]);
55                 *it = s2[i];
56             }
57         }
58         /*for (int i =  0; i < Stack.size(); ++ i ) {
59             cout << Stack[i] << " ";
60         }
61         cout << endl;*/
62         printf("Case %d: ", ++ cur);
63         cout << Stack.size() << endl;
64
65     }
66     return 0;
67 }

UVa10653.Prince and Princess

时间: 2024-10-07 23:04:01

UVa10653.Prince and Princess的相关文章

HDU 4685 Prince and Princess

Prince and Princess Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 468564-bit integer IO format: %I64d      Java class name: Main There are n princes and m princesses. Princess can marry any prince. But prin

算法竞赛与入门经典---P66 [UVA 10635] Prince and Princess

Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below: Prince stands in square 1, ma

uva10635 Prince and Princess LCS 变 lIS

// uva10635 Prince and Princess LCS 变 lIS // 本意求LCS,但是规模有60000多,复杂度肯定不够 // 注意如果俩个序列的值的范围相同,那么可以在一个 // 串中记录在另外一个串中的位置.这样就可以转化成 // 最长上升子序列的问题啦,复杂度是nlogn,可以ac // 这题,还是挺有考究的价值的,很不错 // 哎,继续练吧..... #include <algorithm> #include <bitset> #include <

UVA10635 Prince and Princess(LIS)

题意:王子和公主同时从1出发走到 n*n, 求他们两个路径的最长公共子序列: 思路:因为这题n有250,如果用LCS负责度为O(n^2),容易超时,于是我们选择它的优化版Lis算法来求最长公共子序列,这样我们的复杂度就降为O(n*logn)了. Lis算法: 先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, ..., len(A)).则有动态规划方程:F[t] = ma

HDU 4685 Prince and Princess(二分图 + 强连通)

Problem Description There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love. For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and

uva 10635 Prince and Princess(DP)

uva 10635 Prince and Princess(DP) In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below: Prince stands in square 1, make p jumps and finally reach square n*n. He enters a

UVa 10635 (LIS+二分) Prince and Princess

题目的本意是求LCS,但由于每个序列的元素各不相同,所以将A序列重新编号{1,2,,,p+1},将B序列重新编号,分别为B中的元素在A中对应出现的位置(没有的话就是0). 在样例中就是A = {1 7 5 4 8 3 9},B = {1 4 3 5 6 2 8 9} 重新编号以后: A = {1 2 3 4 5 6 7}, B = {1 4 6 3 0 0 5 7}(里面的0在求LIS时可以忽略) 这样求A.B的LCS就转变为求B的LIS 求LIS用二分优化,时间复杂度为O(nlogn) 第一次

uva 10635 Prince and Princess(LCS问题转化成LIS问题O(nlogn))

题目大意:有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n^2之间的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 分析:本题是LCS问题,但是p*q<=62500,O(pq)的算法显然会LE.在这里有一个条件,每个序列中的各个元素互不相同,所以可以把A中元素重新编号为1~p+1.例如,样例中A={1,7,5,4,8,3,9},B={1,4,3,5,6,2,8,9},因此把A重新编号为{1,2,3,4,5,6,7},则B就是{1,4,6,3,0

强连通+二分匹配(hdu4685 Prince and Princess)

Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1267    Accepted Submission(s): 358 Problem Description There are n princes and m princesses. Princess can marry any prince. B