HDU 1452 (约数和+乘法逆元)

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1452

题目大意:求2004^X所有约数和,结果mod 29。

解题思路

①整数唯一分解定理:

一个整数A一定能被分成:A=(P1^K1)*(P2^K2)*(P3^K3).....*(Pn^Kn)的形式。其中Pn为素数。

如2004=(22)*3*167。

那么2004x=(22x)*(3x)*(167x)。

②约数和公式

对于一个已经被分解的整数A=(P1^K1)*(P2^K2)*(P3^K3).....*(Pn^Kn),

有约数和S=(1+P12+P13+.....P1k1)*.....(1+Pn2+Pn3+.....Pnkn)。

(1+P12+P13+.....P1k1)是一个等比数列,化简为(P1k1+1 -1)/(P1-1).

对于2004^X, 只要求出a=pow(2,2*x+1)-1,b=pow(3,x+1)-1,c=pow(167,x+1)-1即可,使用快速幂计算,注意快速幂模板里要mod。

关键问题在于ans=(a*b/2*c/166) mod 29的计算问题,因为除法是不能同余计算的,所以要计算2*166关于29的乘法逆元,转化成乘法取模。

所以ans=(a*b*c*rev) mod 29。

#include "cstdio"
#define LL long long
#define mod 29
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
    if(a==0&&b==0) return -1;
    if(b==0) {x=1;y=0;return a;}
    LL d=ex_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
LL mod_reverse(LL a,LL n)
{
    LL x,y,d=ex_gcd(a,n,x,y);
    if(d==1) return (x%n+n)%n;
    else return -1;
}
LL pow(LL a,LL n)
{
    LL base=a,ret=1;
    while(n)
    {
        if(n&1) ret=(ret*base)%mod;
        base=(base*base)%mod;
        n>>=1;
    }
    return ret%mod;
}
int main()
{
    LL T,x;
    while(scanf("%I64d",&x)!=EOF&&x)
    {
        LL a=pow(2,2*x+1)-1,b=pow(3,x+1)-1,c=pow(167,x+1)-1,rev=mod_reverse(2*166,mod);
        printf("%I64d\n",(a*b*c*rev)%mod);
    }
}
12170066 2014-11-13 11:02:46 Accepted 1452 0MS 228K 734 B C++ Physcal
时间: 2024-11-10 16:21:58

HDU 1452 (约数和+乘法逆元)的相关文章

hdu 1452 Happy 2004 (快速幂+取模乘法逆元)

Problem Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).Take X = 1 for an example. The positive integer divisors of

HDU 1576 (乘法逆元)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思路: 两种思路,一种从乘法逆元角度,另一种从扩展GCD推公式角度. ①乘法逆元: 先来看下逆元和乘法逆元的关系,对于A*X=B,有X=A-1*B,A-1就是普通的逆元了,在这里就是倒数. 如果A*X=B mod n,变成同余式了,那么A-1依然是存在的,只不过不是倒数了,一般把同余之后的逆元称为乘法

HDU 1576 -- A/B (总结乘法逆元的几种求法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7264    Accepted Submission(s): 5774 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%99

【题解】POJ1845 Sumdiv(乘法逆元+约数和)

POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可以得约数之和sum=(1+a1+a12+...+a1n1)*(1+a2+a22+...+a2n2)*...*(1+am+am2+...+amnm) mod 9901 对于每个(1+ai+ai2+...+aini) mod 9901=(ai(ni+1)-1)/(ai-1) mod 9901 (等比数列

POJ1845 Sumdiv - 乘法逆元+快速幂【A^B的约数个数和】

POJ1845 Sumdiv Sol: 约数个数和\(sumdiv=(1+p_1+p_1^2+\dots + p_1^{c_1})*\dots *(1+p_k+p_k^2+\dots + p_k^{c_k})\) 其中每一项都是一个首项为1,公比为\(p_i\)的等比数列的和,即 \(1*\frac{1-p_i^{c_{k}+1}}{1-p_i}=\frac{p_i^{c_{k}+1}-1}{p_i-1}\) 可以通过快速幂+逆元求解. 然而,当\(9901|(p_i-1)\)时,\(p_i-1

HDU 4828 Grids(卡特兰数+乘法逆元)

首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在左上角,所以1入栈,这时候我们放2,如果我们把2放在了1的下面就代表了1出栈,把2放在上面就代表了2也进栈(可以看一下hint中第二组样例提示),以此类推,这样去放数,正好就对应了上面一行入栈,下面一行出栈的情况,一共n行,对应上限为n的卡特兰数. 需要注意的地方就是在使用卡特兰数递推式的时候,除法

HDU 1452 Happy 2004(因子和的积性函数)

题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都有性质f(ab)=f(a)f(b)的函数. 在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数. 若对于某积性函数 f(n),就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的. s(

LightOJ - 1050 (唯一分解+推公式+乘法逆元)

题意:求a^b的所有约数和对1e9+7取模的结果 思路:对于一个数p,进行唯一分解,则p=P1^M1*P2^M2*...*Pn^Mn,则p的所有约数之和等于(P1^0+P1^1+...+P1^M1)*(P2^0+P2^1+...+P2^M2)*...*(Pn^0+Pn^1+...+Pn^Mn), p^t=P1^(M1*t)*P2^(M2*t)*...*Pn^(Mn*t),每一个(Pn^0+Pn^1+...+Pn^Mn)利用等比数列可以直接推出公式为(Pn^(Mn*t+1)-1)/(Pn-1),用

数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何