NOIP 2011 聪明的质监员

题目描述

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi 。检验矿产的流程是:

1 、给定m 个区间[Li,Ri];

2 、选出一个参数 W;

3 、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi:

这批矿产的检验结果Y 为各个区间的检验值之和。即:Y1+Y2...+Ym

若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产。小T

不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近

标准值S,即使得S-Y 的绝对值最小。请你帮忙求出这个最小值。

输入输出格式

输入格式:

输入文件qc.in 。

第一行包含三个整数n,m,S,分别表示矿石的个数、区间的个数和标准值。

接下来的n 行,每行2个整数,中间用空格隔开,第i+1 行表示 i 号矿石的重量 wi 和价值vi。

接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li,Ri]的两个端点Li 和Ri。注意:不同区间可能重合或相互重叠。

输出格式:

输出文件名为qc.out。

输出只有一行,包含一个整数,表示所求的最小值。

输入输出样例

输入样例#1:

5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3 

输出样例#1:

10

说明

【输入输出样例说明】

当W 选4 的时候,三个区间上检验值分别为 20、5 、0 ,这批矿产的检验结果为 25,此

时与标准值S 相差最小为10。

【数据范围】

对于10% 的数据,有 1 ≤n ,m≤10;

对于30% 的数据,有 1 ≤n ,m≤500 ;

对于50% 的数据,有 1 ≤n ,m≤5,000;

对于70% 的数据,有 1 ≤n ,m≤10,000 ;

对于100%的数据,有 1 ≤n ,m≤200,000,0 < wi, vi≤10^6,0 < S≤10^12,1 ≤Li ≤Ri ≤n 。

Other:

  这道题一直65分///

  原因在于寻找W是漏了一个等于号...

  不能再犯!

Solution:

  虽然题面奇奇怪怪,但是还能看出来是二分答案,然后用前缀和统计。

  代码敲得比较丑,注意数据较大,要开long long。

 1 #include<cstdio>
 2 #define LL long long
 3 #define Min(a,b) (a<b?a:b)
 4 #define Max(a,b) (a>b?a:b)
 5 #define MAXN 2000005
 6 #define INF (1ll<<60)
 7 using namespace std;
 8 LL S,ans=INF;
 9 int n,m;
10 int l[MAXN],r[MAXN];
11 int w[MAXN],v[MAXN];
12 LL sum[MAXN],cnt[MAXN];
13 inline LL read(){
14     LL x=0,f=1;char ch=getchar();
15     while(ch<‘0‘||ch>‘9‘)if(ch==‘-‘){f=-1;ch=getchar();};
16     while(ch>=‘0‘&&ch<=‘9‘){x=x*10-‘0‘+ch;ch=getchar();};
17     return x*f;
18 }
19 LL Abs(LL a){return a>0?a:-a;}
20 LL pre(int W){
21     LL tmp=0;
22     for(int i=1;i<=n;i++){
23         sum[i]=sum[i-1];cnt[i]=cnt[i-1];
24         if(w[i]>=W){
25             sum[i]+=v[i];cnt[i]++;
26         }
27     }
28     for(int i=1;i<=m;i++){
29         tmp+=(cnt[r[i]]-cnt[l[i]-1])*(sum[r[i]]-sum[l[i]-1]);
30     }
31     return tmp;
32 }
33 int main(){
34     //freopen("qc.in","r",stdin);
35     //freopen("qc.out","w",stdout);
36     int Mx=0;
37     n=read();m=read();S=read();
38     for(int i=1;i<=n;i++){w[i]=read();v[i]=read();Mx=Max(Mx,w[i]);}
39     for(int i=1;i<=m;i++){l[i]=read();r[i]=read();}
40     int ll=0,rr=Mx+1;
41     while(ll<=rr){
42         int mid=(ll+rr)>>1;
43         LL y=pre(mid);//y is the mid of price
44             //printf("y=%lld\n",y);
45             //printf("Abs=%d\n",Abs(y-S));
46         ans=Min(ans,Abs(y-S));
47             //printf("ans=%lld\n",ans);
48         if(y<S) rr=mid-1;
49         else ll=mid+1;
50     }
51     printf("%lld\n",ans);
52     return 0;
53 }
时间: 2024-10-13 05:02:50

NOIP 2011 聪明的质监员的相关文章

2011 聪明的质监员

聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去检验另一批矿

[NOIP 2011] 聪明的质检员

聪明的质检员 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri]:2.选出一个参数W:3.对于一个区间[Li,Ri],计算矿石在这个区间上的 检验值$Y_i$:\[Y_i=(\sum_j {1}) \times(\sum_j v_j) ,j \in [L_i,R_i] \land \: w_i \geqslant W\] 其中 $j$ 为矿石编号 这批矿产的 

vijos1740 聪明的质监员 (二分、区间求和)

http://www.rqnoj.cn/problem/657 https://www.vijos.org/p/1740 P1740聪明的质检员 请登录后递交 标签:NOIP提高组2011[显示标签] 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1.给定m个区间[Li,Ri]: 2.选出一个参数W: 3.对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi = ∑1

[Codevs] 1138 聪明的质监员

1138 聪明的质监员 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n 个矿石,从1到n 逐一编号,每个矿石都有自己的重量wi 以及价值vi.检验矿产的流程是:见图 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近标准值

NOIP2011提高组 聪明的质监员 -SilverN

题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去检验另一批矿产,所以他想通

NOIP2011聪明的质监员题解

631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1. 给定 m个区间[Li,Ri]: 2. 选出一个参数W: 3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi=∑j1×∑jvj, j∈[

P1314 聪明的质监员

P1314 聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去

noip2011 聪明的质监员

P1314 聪明的质监员 322通过 1.5K提交 题目提供者该用户不存在 标签二分2011NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的

luogu P1314 聪明的质监员 x

P1314 聪明的质监员(至于为什么选择这个题目,可能是我觉得比较好玩呗) 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差