K临近算法是基于实例的学习,使用算法的时候我们必须要有接近分类结果的实例训练样本数据。
优点:精度高,对异常值不敏感
缺点:
- 时间复杂度和空间复杂度比较大。(如果训练样本数据集比较大,需要大量的空间来保存数据,并且需要待预测数据和训练样本数据集每条数据的距离,耗费时间。)
- 无法给出任何数据的基础结构信息,因此无法知晓平均实例样本和典型事例样本有什么特征。
- 无法持久化分类器。
时间: 2024-10-16 13:01:02
K临近算法是基于实例的学习,使用算法的时候我们必须要有接近分类结果的实例训练样本数据。
优点:精度高,对异常值不敏感
缺点: