PIC32MZ tutorial -- External Interrupt

  In my older blog "PIC32MZ tutorial -- Key Debounce", I shows how to acheive key debounce with port polling. At this moment, I write an application which uses External Interrupt.  Therefore, only generates interrupt and starts debounce when the falling or raising edge happens, so it will eliminate the MCU load of port polling. Finally, this application runs wonderfully on PIC32MZ EC Starter Kit. The button on RB14 released, the LED on RH0 lights up. and the button of RB14 pressed, the LED on RH0 puts out. The below is the copy of code of this application.

#include <xc.h>
#include <sys/attribs.h>
#pragma config FMIIEN = ON // Ethernet RMII/MII Enable (MII Enabled) // need a 25MHz XTAL in MII mode, a 50MHz Clock in RMII mode.
#pragma config FETHIO = ON // Ethernet I/O Pin Select (Default Ethernet I/O)
#pragma config PGL1WAY = ON // Permission Group Lock One Way Configuration (Allow only one reconfiguration)
#pragma config PMDL1WAY = ON // Peripheral Module Disable Configuration (Allow only one reconfiguration)
#pragma config IOL1WAY = ON // Peripheral Pin Select Configuration (Allow only one reconfiguration)
#pragma config FUSBIDIO = OFF // USB USBID Selection (Controlled by Port Function)

// DEVCFG2  7FF9B11A
#pragma config FPLLIDIV = DIV_3 // System PLL Input Divider (3x Divider)
#pragma config FPLLRNG = RANGE_5_10_MHZ // System PLL Input Range (5-10 MHz Input)
#pragma config FPLLICLK = PLL_POSC // System PLL Input Clock Selection (POSC is input to the System PLL)
#pragma config FPLLMULT = MUL_50 // System PLL Multiplier (PLL Multiply by 50)  //PLL must output between 350 and 700 MHz
#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider (2x Divider)
#pragma config UPLLFSEL = FREQ_24MHZ // USB PLL Input Frequency Selection (USB PLL input is 24 MHz)
#pragma config UPLLEN = OFF // USB PLL Enable (USB PLL is disabled)

// DEVCFG1  7F653839
#pragma config FNOSC = SPLL // Oscillator Selection Bits (System PLL)
#pragma config DMTINTV = WIN_127_128 // DMT Count Window Interval (Window/Interval value is 127/128 counter value)
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable (Disable SOSC)
#pragma config IESO = OFF // Internal/External Switch Over (Disabled)
#pragma config POSCMOD = EC // Primary Oscillator Configuration (External clock mode)
#pragma config OSCIOFNC = ON // CLKO Output Signal Active on the OSCO Pin (Enabled)
#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection (Clock Switch Disabled, FSCM Disabled)
#pragma config WDTPS = PS32 // Watchdog Timer Postscaler (1:32)
#pragma config WDTSPGM = STOP // Watchdog Timer Stop During Flash Programming (WDT stops during Flash programming)
#pragma config WINDIS = NORMAL // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode)
#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT Disabled)
#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window size is 25%)
#pragma config DMTCNT = DMT31 // Deadman Timer Count Selection (2^31 (2147483648))
#pragma config FDMTEN = OFF // Deadman Timer Enable (Deadman Timer is disabled)

// DEVCFG0  FFFFFFF7
#pragma config DEBUG = OFF // Background Debugger Enable (Debugger is disabled)
#pragma config JTAGEN = ON // JTAG Enable (JTAG Port Enabled)
#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select (Communicate on PGEC2/PGED2)
#pragma config TRCEN = ON // Trace Enable (Trace features in the CPU are enabled)
#pragma config BOOTISA = MIPS32 // Boot ISA Selection (Boot code and Exception code is MIPS32)
#pragma config FECCCON = OFF_UNLOCKED // Dynamic Flash ECC Configuration (ECC and Dynamic ECC are disabled (ECCCON bits are writable))
#pragma config FSLEEP = OFF // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode)
#pragma config DBGPER = ALLOW_PG2 // Debug Mode CPU Access Permission (Allow CPU access to Permission Group 2 permission regions)
#pragma config EJTAGBEN = NORMAL // EJTAG Boot (Normal EJTAG functionality)

// DEVCP0
#pragma config CP = OFF // Code Protect (Protection Disabled)

#define Sys_Conf()          PRECON = 0x12  
#define LED_IOCTL()       TRISHCLR = (1<<0)
#define LED_SETON()       LATHSET = (1<<0)
#define LED_SETOFF()      LATHCLR = (1<<0)
#define LED_ONOFF()       LATHINV = (1<<0)
#define LED_OPEN()        ANSELH &= 0xFFFFFFFE

typedef enum _LED_STATE_t {
        /* Describe structure member. */
        OFF = 0,

        /* Describe structure member. */
        ON = 1

    } LED_STATE_t;

LED_STATE_t PreLedState, LedState;
#define DEBOUNCE_Input          (PORTB & 0x4000)
#define DEBOUNCE_Open()         ANSELB = 0xFFFFBFFF
#define DEBOUNCE_IOCtl()        CNPUBSET = 0x4000
#define DEBOUNCE_Output         LedState
#define DEBOUNCE_ThreholdLow    0
#define DEBOUNCE_ThreholdHigh   100

volatile unsigned char DEBOUNCE_EventStart;
    //volatile unsigned char DEBOUNCE_TimeFlag;
    unsigned long DEBOUNCE_PreInput;
    unsigned int DEBOUNCE_Integrator;

    void Key_Init(void)
    {
        DEBOUNCE_EventStart = 0;
        DEBOUNCE_Integrator = DEBOUNCE_ThreholdHigh / 2;
        //DEBOUNCE_TimeFlag = 0;

        DEBOUNCE_Open();
        DEBOUNCE_IOCtl();
        DEBOUNCE_PreInput = DEBOUNCE_Input;

        //Pps_UnLock();
        INT1R = 0x2;
        //Pps_Lock();
        INTCONCLR = 0x2;

        IPC2SET = 0x10;
        IFS0CLR = 0x100;
        IEC0SET = 0x100;
        //CNENBSET = 0x1000;
        //IPC29SET = 0x12000000;
        //IFS3CLR = 0x800000;
        //IEC3SET = 0x800000;
        //CNCONBSET = 0x8000;
    }

    //void Key_Scheduler(void)
    void Key_Debounce(void)
    {
        //if (DEBOUNCE_TimeFlag)
        //{
            if (DEBOUNCE_EventStart)
            {
                if (DEBOUNCE_Input == 0)
                {
                    if (DEBOUNCE_Integrator-- == DEBOUNCE_ThreholdLow)
                    {
                        DEBOUNCE_Output = 0;
                        DEBOUNCE_PreInput = DEBOUNCE_Input;
                        DEBOUNCE_EventStart = 0;
                        DEBOUNCE_Integrator = DEBOUNCE_ThreholdHigh / 2;
                    }
                }
                else                   //if (DEBOUNCE_Input == 1)
                {
                    if (DEBOUNCE_Integrator++ == DEBOUNCE_ThreholdHigh)
                    {
                        DEBOUNCE_Output = 1;
                        DEBOUNCE_PreInput = DEBOUNCE_Input;
                        DEBOUNCE_EventStart = 0;
                        DEBOUNCE_Integrator = DEBOUNCE_ThreholdHigh / 2;
                    }
                }
            }
            //else if (DEBOUNCE_PreInput != DEBOUNCE_Input)
            //{
               // DEBOUNCE_EventStart = 1;
            //}
            //DEBOUNCE_TimeFlag = 0;
        //}
    }

void Led_Init(void)
{
    LED_OPEN();
    LED_IOCTL();
    LED_SETON();
    LedState = ON;
    PreLedState = LedState;
}

void Tmr1_Init(void)
{
    T1CON = 0x8010;
    PR1 = 0x30D3;
    IPC1SET = 0x5;
    TMR1 = 0;
    IEC0SET = 0x10;
    IFS0CLR = 0x10;
}

void Tmr1_Write(unsigned int value)
{
    TMR1 = value & 0xFFFF;
}

void __ISR(_EXTERNAL_1_VECTOR,ipl4AUTO) Ext1_Handler(void)
{
    if ((INTCON & 0x2) == 0)
    {
        INTCONSET = 0x2;
    }
    else
    {
        INTCONCLR = 0x2;
    }
    DEBOUNCE_EventStart = 1;
    IFS0CLR = 0x100; // Clear flag
 }

void __ISR(_TIMER_1_VECTOR,ipl1AUTO) Timer1_Handler(void)
{
    //DEBOUNCE_TimeFlag = 1;
    Key_Debounce();
    Tmr1_Write(0);
    IFS0CLR = 0x10; // Clear flag
 }

void main(void)
{
    Sys_Conf();
    //Wdt_Init();
    Led_Init();
    Key_Init();
    Tmr1_Init();
    Mvec_Interrupt();

    while (1)
    {
        //Wdt_Refresh();
        //Key_Scheduler();
        Led_Scheduler();
    }
}
时间: 2024-12-22 06:49:11

PIC32MZ tutorial -- External Interrupt的相关文章

PIC32MZ tutorial -- OC Interrupt

In my previous blog "PIC32MZ tutorial -- Output Compare", I shows how to apply Output Compare without interrupt to generate PWM signal. I also tried the Output Compare interrupt. I selected OC to be PWM mode without fault pin (OCM = "110&qu

External Input Counter and External interrupt

External Input Counter and External interrupt : count the input signal from the button. So what is the different between two methods ? While external interrupt needs to jump into the interrupt routine to do the increment or decrement of a variable, c

Software UART, Timer, PWM, External Interrupt

How can you add extra hardware UARTs to a 32bit TMS470 ARM7-based microcontroller at zero cost? Solution: Designers can use the high-end timer (HET) peripheral found on all Texas Instruments ARM7-based, 32-bit TMS470 microcontrollers to implement add

PIC32MZ tutorial -- 32-bit Timer

The microcontroller is PIC32MZ2048ECH144 on the PIC32MZ EC Starter Kit. This microcontroller has four 32-bit synchronous timers are available by combining Timer2 with Timer3, Timer4 with Timer5, Timer6 with Timer7, and Timer8 with Timer9. The 32-bit

PIC32MZ tutorial -- Output Compare

Output Compare is a powerful feature of embedded world. The PIC32 Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an

PIC32MZ tutorial -- Change Notification

In my last post I implement "Key Debounce" with port polling, port polling is not very efficient. And this time, I will use change notification instead of port polling. It generates interrupt and starts debounce when the level of digital port ch

PIC32MZ tutorial -- Input Capture

Today I accomplish a simple application for PIC32MZ EC Starter Kit. This application uses Input Capture feature of PIC32MZ. The Input Capture module captures the 32-bit value of the selected Time Base registers when an event occurs at the ICx pin.  T

PIC32MZ tutorial -- Blinky LED

Today I finish the "Blinky LED" application on PIC32MZ starter kit. This application let LED1 blink with 0.5HZ frequence. The pseudo code is like LOOP: LED ON Delay 1 second LED OFF Delay 1 second It uses Timer1 to control the delay time. So fir

PatentTips - Enhanced I/O Performance in a Multi-Processor System Via Interrupt Affinity Schemes

BACKGROUND OF THE INVENTION This relates to Input/Output (I/O) performance in a host system having multiple processors, and more particularly, to efficient usage of multiple processors in handling I/O completions by using interrupt affinity schemes t