在Spark程序中使用压缩

  当大片连续区域进行数据存储并且存储区域中数据重复性高的状况下,数据适合进行压缩。数组或者对象序列化后的数据块可以考虑压缩。所以序列化后的数据可以压缩,使数据紧缩,减少空间开销。

1. Spark对压缩方式的选择

  压缩采用了两种算法:Snappy和LZF,底层分别采用了两个第三方库实现,同时可以自定义其他压缩库对Spark进行扩展。Snappy提供了更高的压缩速度,LZF提供了更高的压缩比,用户可以根据具体需求选择压缩方式。
压缩格式及解编码器如下。
·LZF:org.apache.spark.io.LZFCompressionCodec。
·Snappy:org.apache.spark.io.SnappyCompressionCodec。

压缩算法的对比,如图4-9所示。
(1)Ning-Compress
  Ning-compress是一个对数据进行LZF格式压缩和解压缩的库,这个库是TatuSaloranta([email protected] .fi)书写的。用户可以在Github地址:https://github.com/ning/compress下载,进行学习和研究。

(2)snappy-java
  Snappy算法的前身是Zippy,被Google用于MapReduce、BigTable等许多内部项目。snappy-java由谷歌开发,是以C++开发的Snappy压缩解压缩库的Java分支。Github地址为:https://github.com/xerial /snappy-java
Snappy的目标是在合理的压缩量情况下,提供高压缩速度的库。因此Snappy的压缩比和LZF差不多,并不是很高。根据数据集的不同,压缩比能达到20%~100%。有兴趣的读者可以看一个压缩算法Benchmark,它对基于JVM运行语言的压缩库进行对比。这个Benchmark对snappy-java和其他压缩工具LZO-java/LZF/Qui ckLZ/Gzip/Bzip2进行了比较。地址为Github:https://github.com/ning/jvm-compressor-benchmark/wiki。这个Benchmark是由Tatu [email protected]开发的。Snappy通常在达到相当压缩的情况下,要比同类的LZO、LZF、FastLZ和Qui ckLZ等快速的压缩算法快。它对纯文本的压缩比大概是1.5~1.7x,对HTML网页是2~4x,对图片等二进制数据基本没有压缩,为1x。Snappy分别对64位和32位处理器进行了优化,不论是32位处理,还是64位处理器,都能达到很高的效率。据官方介绍,Snappy经过PB级别的大数据的考验,稳定性方面没有问题,Google的map reduce、rpc等很多框架都用到了Snappy压缩算法。
  压缩是在时间和空间上的一种权衡。更长的压缩和解压缩时间会节省更多的空间。而空间占用少意味着可以缓存更多的数据,节省I/O时间和网络传输时间。不同的压缩算法是在不同情境的一种权衡,而且对不同数据类型文件进行压缩又会产生差异。可以参考图4-9,对不同算法的使用进行权衡。

2. 在Spark程序中使用压缩

用户可以通过下面两种方式配置压缩。
(1)在Spark-env.sh文件中配置
  用户可以在启动前配置文件spark-env.sh设定压缩配置的参数。

export SPARK_JAVA_OPTS="-Dspark.broadcast.compress"

(2)在应用程序中配置
  sc是SparkContext对象,conf是SparkConf对象。

val conf=sc.getConf

  1)获取压缩的配置。

conf.getBoolean("spark.broadcast.compress",true)

  2)压缩的配置。

conf.set("spark.broadcast.compress",true)

  其他参数如表4-2所示:

  在分布式计算中,序列化和压缩是两个重要的手段。Spark通过序列化将链式分布的数据转化为连续分布的数据,这样就能够进行分布式的进程间数据通信,或者在内存进行数据压缩等操作,提升Spark的应用性能。通过压缩,能够减少数据的内存占用,以及IO和网络数据传输开销。

时间: 2024-10-08 11:03:47

在Spark程序中使用压缩的相关文章

[Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情

本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所

[Spark性能调优] Spark Shuffle 中 JVM 内存使用及配置详情

[Spark性能调优]  Spark Shuffle 中 JVM 内存使用及配置详情 本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对

Spark Shuffle 中 JVM 内存使用及配置内幕详情

本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Memory 的运行原理和机制 引言 Spark 从1.6.x 开始对 JVM 的内存使用作出了一种全新的改变,Spark 1.6.x 以前是基于静态固定的JVM内存使用架构和运行机制,如果你不知道 Spark 到底对 JVM 是怎么使用,你怎么可以很有信心地或者是完全确定地掌握和控制数据的缓存空间呢,所

在idea中调试spark程序-配置windows上的 spark local模式

spark程序大致有如下运行模式: standalone模式:spark自带的模式 spark on yarn:利用hadoop yarn来做集群的资源管理 local模式:主要在测试的时候使用, 这三个模式先大致了解,目前我用到的就是local和yarn.其中,我们写spark程序,一般在idea上写,若每次都要将程序打包,再上传到集群,再运行,将严重影响我们效率,所以在调试代码的时候,一般用local模式,在windows的idea上直接操作. 环境配置步骤如下:只做简要说明,各个步骤的具体

底层战详解使用Java开发Spark程序(DT大数据梦工厂)

Scala开发Spark很多,为什么还要用Java开发原因:1.一般Spark作为数据处理引擎,一般会跟IT其它系统配合,现在业界里面处于霸主地位的是Java,有利于团队的组建,易于移交:2.Scala学习角度讲,比Java难.找Scala的高手比Java难,项目的维护和二次开发比较困难:3.很多人员有Java的基础,确保对Scala不是很熟悉的人可以编写课程中的案例预测:2016年Spark取代Map Reduce,拯救HadoopHadoop+Spark = A winning combat

luigi框架--关于python运行spark程序

首先,目标是写个python脚本,跑spark程序来统计hdfs中的一些数据.参考了别人的代码,故用了luigi框架. 至于luigi的原理 底层的一些东西Google就好.本文主要就是聚焦快速使用,知其然不知其所以然. python写Spark或mapreduce还有其他的方法,google上很多,这里用luigi只是刚好有参考的代码,而且理解起来还是简单,就用了. 上代码: import luigi, sysfrom datetime import datetime, timedeltafr

第9节课笔记-彻底实战IntelliJ IDEA 下的Spark程序开发

彻底实战IntelliJ IDEA 下的Spark程序开发下载IntelliJ IDEA 下载gitSpark源码下载:git clone git://github.com/apache/spark.git导入maven 工程 IntelliJ IDEA 启动的向导中Sacal下载需要下载,这是IDEA下载的,和系统层的不一样4.指定JDK1.8.x和Scala2.10.45.file ->Project Stucture 来设置工程lib 核心是添加Spark的jar6.添加Spark jar

[转]MSI安装程序中的文件替换

原文链接:http://teach.hanzify.org/article/652-1233562028.html 前言 最近有汉化朋友问起如何不重新制作MSI文件,而直接用汉化好的文件替换MSI安装程序中的文件.为此,将本人的实践经验作个总结,供各位汉化人参考.有错误的地方烦请指正.※说明:目前可以用于MSI编辑的软件很多,但是有些软件在保存时会在MSI文件中写入一些自己的表或内容,有些会另外嵌入一个CAB文件,使得MSI文件增大.而这里提供的方法保证不会写入任何不必要的内容和文件.※关键点:

GC调优在Spark应用中的实践[转]

作者:仲浩   出处:<程序员>电子刊5月B 摘要:Spark立足内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制.与此同时,它也兼容批处理和流式处理,对于程序吞吐量和延迟都有较高要求,因此GC参数的调优在Spark应用实践中显得尤为重要. Spark是时下非常热门的大数据计算框架,以其卓越的性能优势.独特的架构.易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用.与Hadoop.HBase生态圈的众多项目一样,Spark的运行离不开JVM的支持.由于Sp