不同分割方法应用的彩色空间

人类的眼睛能识别上千种颜色和强度但是只能识别two-dozen(24?)种灰度,经常利用灰度提取不到目标但是用颜色却能提取,所以颜色在模式识别和计算机视觉中有着很重要的作用。但是应用在彩色图像上的分割方法不如在灰度图像上的分割方法多。现在来说应用在彩色图像上的分割方法一般如下所示:

Fig. 4.

Commonly used color image segmentation approaches.

彩色图像可以看作一种特殊的多光谱图像,任何可以用在分割多光谱图像上的分割方法都可以用来分割彩色图像。在分割复杂纹理的图像时比较困难,纹理仍被看作图像分割算法中的重要的问题,关于纹理的变化上的讨论比关于颜色的表示多,以及如何从纹理的变化中提取目标的特征都是要解决的问题。分割方法被分为四大类:基于像素的分割,基于区域的分割,基于边缘的分割,基于物理学的分割。

基本上大部分的应用于灰度图像上的分割经过一定变化都可以应用于彩色图像的分割。但是其中一个问题就是如何把颜色的信息来代表一个像素的整体信息。当颜色被三个分量来表示时,颜色的信息就变得过于分散而导致一个彩色图像单纯的变为多光谱图像丢失了许多人类能感知到的颜色信息。因此如何选取颜色的表示方式对图像的分割有着很重要的意义。每种颜色的表示方式都有着自己的优点和缺点。至今没有一种颜色空间能应用到分割每种图像中去。

现有的大部分的分割算法里,对分割得到的区域定义大多是基于颜色的相似性,因此造成分割如有高光,阴影,以及具有复杂纹理而产生不均匀颜色的物体表面的图像时比较困难。用HSI彩色空间可以一定程度上解决这种问题除了在低饱和度的情况下导致的色调过低的情况。

Table 1.

Monochrome image segmentation techniques

Segmentation Method description Advantages Disadvantages
technique      
Histogram thresholding (mode method) Requires that the histogram of an image has a number of peaks, each corresponds to a region It does not need a prior information of the image. (1) Does not work well for an image without any obvious peaks or with broad and flat valleys
    For a wide class of images satisfying the requirement, this method works very well with low computation complexity (2) Does not consider the spatial details, so cannot guarantee that the segmented regions are contiguous
       
Feature space clustering Assumes that each region in the image forms a separate cluster in the feature space. Can be generally broken into two steps: (1) categorize the points in the feature space into clusters; (2) map the clusters back to the spatial domain to form separate regions Straightforward for classification and easy for implementation (1) How to determine the number of clusters (known as cluster validity)
      (2) Features are often image dependent and how to select features so as to obtain satisfactory segmentation results remains unclear
      (3) Does not utilize spatial information
       
Region-based approaches Group pixels into homogeneous regions. Including region growing, region splitting, region merging or their combination Work best when the region homogeneity criterion is easy to define. They are also more noise immune than edge detection approach (1) Are by nature sequential and quite expensive both in computational time and memory
      (2) Region growing has inherent dependence on the selection of seed region and the order in which pixels and regions are examined
      (3) The resulting segments by region splitting appear too square due to the splitting scheme
       
Edge detection approaches Based on the detection of discontinuity, normally tries to locate points with more or less abrupt changes in gray level. Usually classified into two categories: sequential and parallel Edge detecting technique is the way in which human perceives objects and works well for images having good contrast between regions (1) Does not work well with images in which the edges are ill-defined or there are too many edges
      (2) It is not a trivial job to produce a closed curve or boundary
      (3) Less immune to noise than other techniques, e.g., thresholding and clustering
       
Fuzzy approaches Apply fuzzy operators, properties, mathematics, and inference rules (IF– THEN rules), provide a way to handle the uncertainty inherent in a variety of problems due to ambiguity rather than randomness Fuzzy membership function can be used to represent the degree of some properties or linguistic phrase, and fuzzy IF–THEN rules can be used to perform approximate inference (1) The determination of fuzzy membership is not a trivial job
      (2) The computation involved in fuzzy approaches could be intensive
       
Neural network approaches Using neural networks to perform classification or clustering No need to write complicated programs. Can fully utilize the parallel nature of neural networks (1) Training time is long
      (2) Initialization may affect the results
      (3) Overtraining should be avoided

Full-size table

Table options

Table 2.

Characteristics of color spaces

Color space Advantages Disadvantages
RGB Convenient for display Not good for color image processing due to the high correlation
     
  Can be used to efficiently encode color information in the TV signal of American system; Correlation still exists due to the linear transformation, though not as high as RGB
YIQ Partly gets rid of the correlation of RGB;  
  Involves less computation time;  
  Y is good for edge detection;  
     
  Can be used to efficiently encode color information in the TV signal of European system; Correlation still exists due to the linear transformation, though not as high as RGB
YUV Partly gets rid of the correlation of RGB;  
  Involves less computation time  
     
  Partly gets rid of the correlation of RGB; Correlation still exists due to the linear transformation, though not as high as RGB
I1I2I3 Involves less computation time;  
  Can be useful for color image processing  
     
  Based on human color perception; Useful in some cases where the illumination level varies, because hue is invariant to certain types of highlights, shading, and shadows; Nonremovable singularity and numerically unstable at low saturation due to nonlinear transformation
HSI Hue can be useful for separating  
  objects with different colors  
     
  The individual color components are independent on the brightness of the image; Very noisy at low intensities due to nonlinear transformation.
Nrgb Convenient to represent the color plane;  
(Normalized rgb) Robust to the change of the illumination  
     
  Can control color and intensity information independently; Have the same singularity problem as other nonlinear transformations do
CIE spaces Direct color comparison can be  
(L?u?v? or L?a?b?) performed based on geometric  
  separation within CIE space, and  
  efficient in measuring small color  
  difference  

Full-size table

Table options

总结:

至今没有一种图像分割的理论是通用的,也没有一种颜色空间是通用的,大部分灰度图像的分割方法都能够扩展到彩色图像的分割中去,例如阈值分割,聚类,区域生长,边缘检测,基于模糊的方法等,它们可以应用到彩色图像的一个颜色分量当中去,然后通过一些方法将每个分量的结果结合在一起,得到最终的分割结果,然而有一个问题,如何使用这些颜色的信息作为每一个像素的整体,当彩色图像变为多光谱图像时人类感知的颜色信息会有丢失。另外一个问题就是如何选择彩色空间来表示一幅图像,因为每种颜色空间都有自己的优点和缺点。

时间: 2024-10-20 17:41:50

不同分割方法应用的彩色空间的相关文章

红外目标图像中阈值分割方法的比较与研究

红外目标图像中阈值分割方法的比较与研究   摘要:本文主要以红外图像目标检测技术为背景,在图像阈值分割中以最大熵准则及遗传算法为基础,研究了一维最大熵值法(KSW法)及基于遗传算法的KSW熵法单阈值.双阈值等三种不同的阈值分割方法,并通过实验仿真验证了它们的性能及差异.实验结果表明:基于遗传算法的KSW熵法的双阈值分割方法,可以用于红外型目标检测系统中,并取得良好效果,为了验证其是否具有普适性,在其它科学领域如:沿海码头等方向也做了相应的仿真实验,结果较为满意. 关键词:红外目标检测:阈值分割:

常用的字符串分割方法

起因:前段时间写命令行解析函数(字符串分割比较通用的例子),没有经过深入思考和分析引起了程序死循环,就想了下是否有对应的系统函数可以使用.经过一番搜索之后发现还是有几个可用的字符串分割函数,这里整理下,以作总结及后续查询使用. 当然,如果你觉得自己的字符串处理可以做的很好,可以考虑直接使用字符串查找函数做字符串分割,比如c中的字符串查找函数.CString字符查找函数.string字符查找函数等,更原始点可以直接操作内存. windows下有以下几种可用的字符串分割方法. CString::To

c++字符串分割方法

平常做项目都是用java语言,搞毕业论文的时候,需要用到opengl,而opengl和c++的关系很密切并且参考资料也比较丰富,在程序开发的过程用中到了字符串分割,查api竟然没有找到自带的split函数,在这里记录一下c++字符串分割方法. static void split(const string& src, const string& separator, vector<string>& dest) { string str = src; string subs

日志分割方法

日志分割方法:1.logrotate 2.mv  logfile.log    $(date -d 'yesterday' +'%Y%m%d')_old.log/sbin/killall  -USR1   nginx 或 $(cat  path/nginx.pid)/sbin/killall   -HUP   httpd 3. cp  logfile.log    old_logfile.log/usr/bin/echo "" > logfile.log 其中2.3加入cronc

字符串分割方法

public static String[] split(String str, String limit) { List<String> result = new ArrayList<String>(); char[] chars = limit.toCharArray(); int length = str.length(); int slice = chars.length - 1; int match = 0, start = 0, count = 1; for (int

PIE SDK彩色空间变换

1. 算法功能简介 使用彩色空间变换工具可以将三波段红.绿.蓝图像变换到一个特定的彩色空间,并且能从所选彩色空间变换回 RGB.两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像.此外,颜色亮度值波段或亮度波段可以被另一个波段(通常具有较高的空间分辨率)代替,生成一幅合成图像(将一幅图像的色彩特征与另一幅图像的空间特征相结合). 彩色变换的一般工作流程:选择波段进行 RGB 合成显示→进行彩色变换→进行其他的图像处理→进行彩色逆变换→RGB 合成显示. PIE SDK支持算法功能的

基于深度学习的图像语义分割方法综述

近年来,深度学习技术已经广泛应用到图像语义分割领域.主要对基于深度学习的图像语义分割的经典方法与研究现状进行分类.梳理和总结.根据分割特点和处理粒度的不同,将基于深度学习的图像语义分割方法分为基于区域分类的图像语义分割方法和基于像素分类的图像语义分割方法.把基于像素分类的图像语义分割方法进一步细分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法.对每类方法的代表性算法进行了分析介绍,并详细总结了每类方法的基本思想和优缺点,系统地阐述了深度学习对图像语义分割领域的贡献.对图像语义分割相关实

最长公共子串问题(方法一:暴力+RK匹配,方法二:DP+空间优化)

时间:2014.09.05 地点:基地二楼 一.题目 给定一个query和一个text,均由小写字母组成.要求在text中找出以同样的顺序连续出现在query中的最长连续字母序列的长度.例如, query为"acbac",text为"acaccbabb",那么text中的"cba"为最长的连续出现在query中的字母序列,因此,返回结果应该为其长度3. 二.分析 对于该问题最直接的想法就是对query字符串的所有非空子字符串再text中进行查找比

Oracle 5分钟或30分钟分割方法

在最近项目中,有一个客户需求是针对每天所有时间点的数据,分割成每5分钟展示一个用户数总数. 数据情景是: 一个游戏中所有用户在线的时间数据(当然简单的求和,可能会有重复数据).但在这重点是Oracle  SQL 中用于按照一定时间间隔分割的方法,具体5分钟分割实例如下: SELECT tt.reasonContent,to_char(tt.day_id,'hh24:mi')daytime  ,tt.num FROM (   SELECT ll.day_id,ll.reasonContent,CO