hdu 2988 Dark roads

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=2988

Dark roads

Description

Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

Input

The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 231.

Output

For each test case print one line containing the maximum daily amount the government can save.

Sample Input

7 11
0 1 7
0 3 5
1 2 8
1 3 9
1 4 7
2 4 5
3 4 15
3 5 6
4 5 8
4 6 9
5 6 11
0 0

Sample Output

51

最小生成树。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<set>
using std::set;
using std::sort;
using std::pair;
using std::swap;
using std::multiset;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 200010;
const int INF = 0x3f3f3f3f;
typedef unsigned long long ull;
struct edge {
    int u, v, w;
    inline bool operator<(const edge &x) const {
        return w < x.w;
    }
}G[N];
struct Kruskal {
    int E, sum, par[N], rank[N];
    inline void init(int n) {
        E = sum = 0;
        rep(i, n + 1) {
            par[i] = i, rank[i] = 0;
        }
    }
    inline void built(int m) {
        int u, v, w;
        while (m--) {
            scanf("%d %d %d", &u, &v, &w);
            G[E++] = { u, v, w }, sum += w;
        }
    }
    inline int find(int x) {
        while (x != par[x]) {
            x = par[x] = par[par[x]];
        }
        return x;
    }
    inline bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return false;
        if (rank[x] < rank[y]) {
            par[x] = y;
        } else {
            par[y] = x;
            rank[x] += rank[x] == rank[y];
        }
        return true;
    }
    inline int kruskal() {
        int ans = 0;
        sort(G, G + E);
        rep(i, E) {
            edge &e = G[i];
            if (unite(e.u, e.v)) {
                ans += e.w;
            }
        }
        return ans;
    }
    inline void solve(int n, int m) {
        init(n), built(m);
        printf("%d\n", sum - kruskal());
    }
}go;
int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w+", stdout);
#endif
    int n, m;
    while (~scanf("%d %d", &n, &m), n + m) {
        go.solve(n, m);
    }
    return 0;
}
时间: 2024-12-24 12:29:57

hdu 2988 Dark roads的相关文章

【HDOJ】2988 Dark roads

最小生成树. 1 /* */ 2 #include <iostream> 3 #include <string> 4 #include <map> 5 #include <queue> 6 #include <set> 7 #include <stack> 8 #include <vector> 9 #include <deque> 10 #include <algorithm> 11 #inclu

hdu oj1102 Constructing Roads(最小生成树)

Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13995    Accepted Submission(s): 5324 Problem Description There are N villages, which are numbered from 1 to N, and you should

hdu 1301 Jungle Roads

链接:hdu 1301 题意:n个村庄,已知n-1村庄分别到其他村庄修路的费用,求是n个村庄连通的最小费用 分析:这个是最小生成树的题,只不过村庄的编号为A-Z的大写字母,操作比较麻烦,可以将其对应转化为1-26, 这样就与普通的最小生成树题一样了 #include<cstdio> #include<algorithm> using namespace std; int f[50],n,m; struct stu { int a,b,c; }t[300]; int cmp(stru

Dark roads(kruskal)

Dark roads Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 7   Accepted Submission(s) : 2 Problem Description Economic times these days are tough, even in Byteland. To reduce the operating costs,

HDU 1102 Constructing Roads, Prim+优先队列

题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are conne

HDU2988 Dark roads 【最小生成树Kruskal】

Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 583    Accepted Submission(s): 253 Problem Description Economic times these days are tough, even in Byteland. To reduce the operating

HDU 1025 Constructing Roads In JGShining&#39;s Kingdom   LIS 简单题 好题 超级坑

Constructing Roads In JGShining's Kingdom Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which are located in two parallel lines. Half of these cities are rich in resource (we call them rich cities) whi

hdu 1301 Jungle Roads (基础最小生成树)

题目: 链接:点击打开链接 题意: 对n个村庄之间的路进行修理, 然后是n-1行,每行的第一组数据时一个大写字母VIL和一个数K,Vil表示从这个村庄出发,K表示刚才的那个字母代表的村庄和其他村庄的路的数目,接下来在同一行是K组数据,每组是一个大写字母和一个数,大写字母表示和第一个村庄连接的村庄,数表示维修他们之间的路所需的费用.现在为了使维修费油最低,只需所维修的路使每个村庄都是直接或间接的连接即可,求最小的费用. 思路: 只需把输入数据处理好即可.其他都是kruskal模板.' 代码: #i

!HDU 1025 Constructing Roads In JGShining&#39;s Kingdom--DP--(LIS算法)

题意:在马路两边分别有n个城市,给出期望的n条路用于连接两边的城市,但是要求路不能有交叉,求在期望的n条中路实际能保留下来的最大的条数 分析:这题很好 1.本题抽象出来的模型应该是求最长上升(不下降)子序列 2.LIS的 nlog(n)算法: O(n^2) 的算法是dp[i]保留以i结尾的最长上升子序列的长度,令k=dp[i],O(nlog(n))算法是从k的角度出发,设d(k)为在长度为 k 的序列中的最小的位置,即:d(k)=min(a[i]),其中 f[i]=k,然后二分,每次看a[i]是