MXNet 中的几个数据集

from mxnet import gluon
def transform(data, label):
    return data.astype(‘float32‘) / 255., label.astype(‘float32‘)

mnist_train = gluon.data.vision.MNIST(train= True, transform= transform)
mnist_test = gluon.data.vision.MNIST(train= False, transform= transform)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  data = np.fromstring(fin.read(), dtype=np.uint8)

下载几个数据集到本地磁盘

cifar_100

cifar_100_train = gluon.data.vision.CIFAR100(root= ‘E:/Data/MXNet/cifar100‘)
cifar_100_test = gluon.data.vision.CIFAR100(root= ‘E:/Data/MXNet/cifar100‘, train= False)

def show_images(images):
    n = images.shape[0]
    _, figs = plt.subplots(1, n, figsize=(15, 15))
    for i in range(n):
        figs[i].imshow(images[i].asnumpy())
        figs[i].axes.get_xaxis().set_visible(False)
        figs[i].axes.get_yaxis().set_visible(False)
    plt.show()

data, label = cifar_100_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar100\cifar-100-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar100/cifar-100-binary.tar.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:252: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+2)

(8, 32, 32, 3) [15  4 14  1  5 18  3 10]

cifar-10

cifar_10_train = gluon.data.vision.CIFAR10(root= ‘E:/Data/MXNet/cifar10‘)
cifar_10_test = gluon.data.vision.CIFAR10(root= ‘E:/Data/MXNet/cifar10‘, train= False)

def show_images(images):
    n = images.shape[0]
    _, figs = plt.subplots(1, n, figsize=(15, 15))
    for i in range(n):
        figs[i].imshow(images[i].asnumpy())
        figs[i].axes.get_xaxis().set_visible(False)
        figs[i].axes.get_yaxis().set_visible(False)
    plt.show()

data, label = cifar_10_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar10\cifar-10-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/cifar-10-binary.tar.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:193: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+1)

(8, 32, 32, 3) [9 9 4 1 1 2 7 8]

mnist_train

mnist_train = gluon.data.vision.MNIST(root= ‘E:/Data/MXNet/mnist‘)
mnist_test = gluon.data.vision.MNIST(root= ‘E:/Data/MXNet/mnist‘, train= False)

def show_images(images):
    n = images.shape[0]
    _, figs = plt.subplots(1, n, figsize=(15, 15))
    for i in range(n):
        figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
        figs[i].axes.get_xaxis().set_visible(False)
        figs[i].axes.get_yaxis().set_visible(False)
    plt.show()

data, label = mnist_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-labels-idx1-ubyte.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  data = np.fromstring(fin.read(), dtype=np.uint8)

Downloading E:/Data/MXNet/mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-labels-idx1-ubyte.gz...
(8, 28, 28, 1) [0 4 1 9 2 1 3 1]

Fashion-MNIST

fashion_mnist_train = gluon.data.vision.FashionMNIST(root= ‘E:/Data/MXNet/fashion_mnist‘)
fashion_mnist_test = gluon.data.vision.FashionMNIST(root= ‘E:/Data/MXNet/fashion_mnist‘, train= False)

def show_images(images):
    n = images.shape[0]
    _, figs = plt.subplots(1, n, figsize=(15, 15))
    for i in range(n):
        figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
        figs[i].axes.get_xaxis().set_visible(False)
        figs[i].axes.get_yaxis().set_visible(False)
    plt.show()

def get_text_labels(label):
    text_labels = [
        ‘t-shirt‘, ‘trouser‘, ‘pullover‘, ‘dress,‘, ‘coat‘,
        ‘sandal‘, ‘shirt‘, ‘sneaker‘, ‘bag‘, ‘ankle boot‘
    ]
    return [text_labels[int(i)] for i in label]

data, label = fashion_mnist_train[0:9]
show_images(data)
print(get_text_labels(label))
Downloading E:/Data/MXNet/fashion_mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  data = np.fromstring(fin.read(), dtype=np.uint8)

Downloading E:/Data/MXNet/fashion_mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-labels-idx1-ubyte.gz...

[‘pullover‘, ‘ankle boot‘, ‘shirt‘, ‘t-shirt‘, ‘dress,‘, ‘coat‘, ‘coat‘, ‘sandal‘, ‘coat‘]

原文地址:https://www.cnblogs.com/q735613050/p/8367158.html

时间: 2024-10-12 20:15:56

MXNet 中的几个数据集的相关文章

FineReport中如何制作树数据集来实现组织树报表

1. 问题描述 FineReport,组织树报表中由id与父id来实现组织树报表,若层级数较多时,对每个单元格设置过滤条件和形态会比较繁琐,因此FineReport提供了一种特殊的数据集--树数据集,只需要简单的设置就能自动递归出层级,方便的实现如下图组织树报表: 图一   图二 2. FineReport构建树 2.1 新建报表,添加数据集 新建工作薄,添加数据集ds1取出原始数据,SQL语句为SELECT * FROM 公司部门. 2.2 定义树数据集 1)根据父字段构建树 使用情形:原始表

Delphi中JSon SuperObject 使用:数据集与JSON对象互转

在delphi中,数据集是最常用数据存取方式.因此,必须建立JSON与TDataSet之间的互转关系,实现数据之间通讯与转换.值得注意的是,这只是普通的TDataset与JSON之间转换,由于CDS包含了Delta数据包,其数据格式远比普通的TDataset更复杂. 数据集字段信息,是一个完整的字典信息.因此,我们在JSON必须也建立字典信息,才能创建数据集的字段信息.我们设置其JSON信息如下: COLS:[字段列表信息],如: "Cols":[{"JsonType&quo

birt报表中使用多个数据集。

这个问题困扰了几天,也没搜到答案,由于工作需要,创建了两个数据集和两个表格,第一个数据集和表格之间没有任何问题.但是第二个数据集拖过去就显示不可用,除非拖到表格外面,当然也就没用了.一朋友说拖一个网格过来,然后把在网格里拖几个表,这样就可以使用多个数据集了.从而也大大减小了写一条sql的难度,因为可以写多段简短的sql了. 在birt中写sql,假如sql语句中用到了case when then end sql特别容易报错,尤其是带有group by的语句,一定要注意case when 的字段.

MXNet中bucket机制注记

Preface 之前看API以为bucket是一个根植于底层操作的接口(MXNet doc功不可没 -_-|| ).从LSTM看过来,接触到了一些相关的程序,后面再把bucketing_module.py那部分查看了下,发现bucket只是一个应用层机制,主要的实现存在于module/bucketing_module.py里面.原理清晰,实现简洁,在这做个记号. Code & Comments 先放些相关的链接,做个预备. MXNet 官方的文档(\tucao 出个文档真不容易,还带时效性...

MXNet中LSTM例子注记

Preface 序列问题也是一个interesting的issue.找了一会LSTM的材料,发现并没有一个系统的文字,早期Sepp Hochreiter的paper和弟子Felix Gers的thesis看起来并没有那么轻松.最开始入手的是15年的一个review,当时看起来也不太顺畅,但看了前两个(一部分)再回头来看这篇的formulation部分,会清晰些. 本来打算自己写个程序理一下,发现这里有个参考,程序很短,Python写的总共没有200line,但要从里面理出结构来有些费劲.想起MX

在WPF中绘制多维数据集

原文 https://stuff.seans.com/2008/08/13/drawing-a-cube-in-wpf/ 是时候使用WPF绘制一个简单的3D对象了.作为WPF中3D图形的快速介绍,让我们只渲染一个最简单的对象 - 一个立方体. 在这个例子中,我将直接在XAML中定义我们需要的所有内容.与WPF中的其他内容一样,我们可以直接在代码中完成所有这些操作.但是在XAML中定义所有内容更加清晰,因为它使对象层次结构更加明显.在实际项目中,您显然会在代码中执行此操作,例如创建或加载3D网格(

MXNet中NDArray中的广播运算条件

问题 <动手学深度学习>(By Aston Zhang, Mu Li, Zachary C.Lipton, Alexander J.Smola)中介绍NDArray中的广播运算时并没有说清楚广播运算的条件.但是,此运算在此书后续代码中广泛使用,结合网络上的搜索,特别详解如下. 详解 情况一:两个形状相同的NDArray按元素运算,不需要广播机制. 情况二:当形状不同时,这两个NDArray按元素运算还有可能进行 条件是:这两个NDArray的形状要"兼容".所谓"

mxnet实战系列(一)入门与跑mnist数据集

最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mnist,tensorflow 要比mxnet 慢一二十倍.mxnet只需要半分钟,tensorflow跑了13分钟. 在mxnet中如何开跑? cd /mxnet/example/image-classification python train_mnist.py 我用的是最新的mxnet版本.运行

MXNET:监督学习

线性回归 给定一个数据点集合 X 和对应的目标值 y,线性模型的目标就是找到一条使用向量 w 和位移 b 描述的线,来尽可能地近似每个样本X[i] 和 y[i]. 数学公式表示为\(\hat{y}=Xw+b\) 目标函数是最小化所有点的平方误差 \(\sum_{i=1}^{n} (\hat{y_i}-y_i)^2\) ?个神经?络就是?个由节点(神经元)和有向边组成的集合.我们? 般把?些节点组成层,每?层先从下??层的节点获取输?,然后输出给上?的层使?.要计算? 个节点值,我们需要将输?节点