【BZOJ2431】【HAOI2009】逆序对数列 DP

题目大意

  问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列。

  \(n,k\leq 1000\)

题解

  我们考虑从小到大插入这\(n\)个数。

  设当前插入了\(i\)个数,插入下一个数可以形成\(0,1,\ldots,i-1\)个逆序对。
\[
f_{i,j}=\sum_{k=j-i+1}^jf_{i-1,k}
\]
  用前缀和优化即可。

  时间复杂度:\(O(nk)\)

  UPD:这个问题可以做到\(O(n\log n)\)(FFT)或\(O(n\sqrt n)\)(五边形数定理)。(\(nk\)同阶)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
    if(a>b)
        swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
int f[1010][1010];
int s[1010][1010];
int p=10000;
int main()
{
//  open("bzoj2143");
    int n,k;
    scanf("%d%d",&n,&k);
    f[0][0]=1;
    int i,j;
    for(i=0;i<=k;i++)
        s[0][i]=1;
    for(i=1;i<=n;i++)
        for(j=0;j<=k;j++)
        {
            f[i][j]=s[i-1][j];
            if(j-i+1>=1)
                f[i][j]=(f[i][j]-s[i-1][j-i])%p;
            s[i][j]=f[i][j];
            if(j>=1)
                s[i][j]=(s[i][j]+s[i][j-1])%p;
        }
    int ans=f[n][k];
    ans=(ans+p)%p;
    printf("%d\n",ans);
    return 0;
}

原文地址:https://www.cnblogs.com/ywwyww/p/8513255.html

时间: 2024-10-20 13:08:45

【BZOJ2431】【HAOI2009】逆序对数列 DP的相关文章

[bzoj2431][HAOI2009][逆序对数列] (dp计数)

Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. Sample Input 4 1 Sample Output 3 样例说明: 下列3个数列逆序对数都为1:分别是1

BZOJ2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 473[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, 所以放在i+1后面的所有数都会与i+1形成逆序对 转移方程:dp[i][j]=Σ dp[i-1][j-k]  k∈[0,min(j,i-1)] 前缀和优化 朴素的DP #include<cstdio> #include<algorithm> using namespace std;

BZOJ-2431: [HAOI2009]逆序对数列 (傻逼递推)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2401  Solved: 1389[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

【bzoj2431】[HAOI2009]逆序对数列 dp

题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入 第一行为两个整数n,k. 输出 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 样例输入 4 1 样例输出 3 题解 dp傻*题 设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个

bzoj2431: [HAOI2009]逆序对数列(DP)

一眼题...f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<algorithm> #define ll long long using namespace std; const int ma

2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

洛谷P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入输出格式 输入格式: 第一行为两个整数n,k. 输出格式: 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 输入输出样例 输入样例#1: 4 1 输出样例#1: 3 说明 样例说明:

P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 错误日志: 没想対, 菜是原罪, 最近状态不佳 Solution 在一段 \(1 - (i - 1)\) 的排列中加入 \(i\) 你可以控制 \(i\) 插入的位置, 给这个排列的逆序对任意加上 \(1 - (i - 1)\) 对(从最右到最左插入)