[luoguP1963] [NOI2009]变换序列(二分图最大匹配)

传送门

根据公式xjb推一下,然后就可以连边。

考虑到字典序最小,和匈牙利算法的实现过程,要倒序匹配。

#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 40001

using namespace std;

int n, cnt;
int head[N], to[N], nex[N], belong[N], a[N];
bool vis[N];
vector <int> vec;

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1;
	for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘;
	return x * f;
}

inline bool check(int x, int y, int d)
{
	return 0 <= x && x < n && min(abs(x - y), n - abs(x - y)) == d;
}

inline void add(int x, int y)
{
	to[cnt] = y;
	nex[cnt] = head[x];
	head[x] = cnt++;
}

inline bool dfs(int u)
{
	int i, v;
	for(i = head[u]; ~i; i = nex[i])
	{
		v = to[i];
		if(!vis[v])
		{
			vis[v] = 1;
			if(!belong[v] || dfs(belong[v]))
			{
				belong[v] = u;
				return 1;
			}
		}
	}
	return 0;
}

inline bool solve()
{
	int i, ans = 0;
	for(i = n - 1; i >= 0; i--)
	{
		memset(vis, 0, sizeof(vis));
		ans += dfs(i);
	}
	return ans == n;
}

int main()
{
	int i, j, x, d;
	n = read();
	memset(head, -1, sizeof(head));
	for(i = 0; i < n; i++)
	{
		d = read();
		vec.clear();
		x = d + i;
		if(check(x, i, d)) vec.push_back(x);
		x = n - d + i;
		if(check(x, i, d)) vec.push_back(x);
		x = i - d;
		if(check(x, i, d)) vec.push_back(x);
		x = i - n + d;
		if(check(x, i, d)) vec.push_back(x);
		sort(vec.begin(), vec.end());
		if(vec.size()) for(j = vec.size() - 1; j >= 0; j--) add(i, vec[j]);
	}
	if(!solve()) puts("No Answer");
	else
	{
		for(i = 0; i < n; i++) a[belong[i]] = i;
		for(i = 0; i < n; i++) printf("%d ", a[i]);
	}
	return 0;
}

  

原文地址:https://www.cnblogs.com/zhenghaotian/p/8260229.html

时间: 2024-10-11 08:18:35

[luoguP1963] [NOI2009]变换序列(二分图最大匹配)的相关文章

【BZOJ1562】【jzyzOJ1730】【COGS409】NOI2009变换序列 二分图匹配

[问题描述] 对于N个整数0, 1, --, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换序列T.如果有多个满足条件的序列,输出其中字典序最小的一个. 说明:对于两个变换序列S和T,如果存在p<N,满足对于i=0,1,--p-1,Si=Ti且Sp<Tp,我们称S比T字典序小. [输入文件] 输入文件transform.in的第一行包含一个整数N,表示序列的长度.接下来的一行包含N个整数Di,其中Di

Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配

题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆   输入文件:transform.in   输出文件:transform.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 对于N个整数0, 1, ……, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换序列T.如果有多个满足条

noi2009变换序列

noi2009变换序列 一.题目 1843 变换序列 2009年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 Description 对于N个整数0,1,…,N-1,一个变换序列T可以将i变成Ti,其中:Ti∈{0,1,…,N-1}且Ui=1 to n-1 {Ti}={0,1,…,N-1}.任意x,y∈{0,1,…,N-1},定义x和y之间的距离D(x,y)=min{|x-y|,N-|x-y|}.给定每个i和Ti之间的距离D

BZOJ1562: [NOI2009]变换序列

1562: [NOI2009]变换序列 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1148  Solved: 599[Submit][Status] Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30%的数据中N≤50:60%的数据中N≤500:100%的数据中N≤10000. Source 题解: 不愧是NOI的题目,果然是好题. 具

【bzoj1562】 NOI2009—变换序列

http://www.lydsy.com/JudgeOnline/problem.php?id=1562 (题目链接) 题意:给出一个序列(0~n-1),这个序列经过某个变换会成为另外一个序列,但是其中的元素不会改变,给出初始序列与变换后的序列每一位上的“距离”,求字典序最小的变换序列. Solution  每个位置上只有2种情况,很明显的二分图匹配.因为要求字典序最小,我们考虑匈牙利算法的运行方式,是保证当前匹配的点最优,所以连边是将字典序小的点尽可能后连,保证第一个邻接表第一个选出来的点事字

BZOJ 1562 [NOI2009]变换序列:二分图匹配

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1562 题意: 给定n,定义D(x,y) =  min(|x-y|, n-|x-y|),然后给定数组d[i] = D(i,T[i]). 让你求一个0到n-1的排列T,下标i∈[0,n-1],满足给定的D(i,T[i]),且字典序最小. 若没有答案输出"No Answer". 题解: 其实就是让你求一个排列T,其中T[i]要么填(i+d[i])%n,要么填(i-d[i]+n)%n.

【题解】 [NOI2009]变换序列 (二分图匹配)

懒得复制,戳我戳我 Solution: 这个题面出的很毒瘤,读懂了其实是个板子题qwq 题面意思:有个\(0\)至\(N-1\)的数列是由另一个数列通过加减得到的,相当于将\(A_i\)变成\(i\),每一步的代价计算就是\(min(A_i-i,N-(A_i-i))\),并且\(A_i\left(0<=i<N\right)\)互不相同,读入代价,要求字典序最小的满足要求的数列 我们设读入的为\(w[i]\) 思路其实很简单,\(i\)只可能是由\(i-w[i]\) 或者 \(i+w[i]\)

1562: [NOI2009]变换序列 - BZOJ

Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30%的数据中N≤50:60%的数据中N≤500:100%的数据中N≤10000. 二分图匹配,倒着匹配,每次选小的增广(随便乱yy一下,应该就可以证明是字典序最小的吧) 1 const 2 maxn=10010; 3 var 4 first,link:array[0..maxn]of longint; 5 a:array[0..maxn,

hihoCoder #1122 : 二分图二?二分图最大匹配之匈牙利算法

#1122 : 二分图二•二分图最大匹配之匈牙利算法 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了.因为过年时间并不是很长,所以姑姑希望能够尽可能在一天安排比较多的相亲.由于一个人同一天只能和一个人相亲,所以要从当前的相亲情况表里选择尽可能多的组合,且每个人不会出现两次.不知道有没有什么好办法,对于当前给定的相亲情况表,能够算出最多能同时