1013: [JSOI2008]球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 6517  Solved: 3381
[Submit][Status][Discuss]

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +

… + (an-bn)^2 )

分析

在一个n维空间中有一个球,然后求出圆心。给出了球上的n+1个点。

这n+1个点都满足到球心的距离相等。设出圆心$(a_1,a_2...a_n)$,则对于每个球上的点$(x_1,x_2...x_n)$,都有

$(x_1-a_1)^2+(x_2-a_2)^2+...+(x_n-a_n)^2=r^2$

两两合并,然后得到一个线性方程,利用高斯消元即可。

code

 1 #include<cstdio>
 2 #include<cmath>
 3 #include<algorithm>
 4
 5 using namespace std;
 6 const int N = 110;
 7 double a[N][N],c[N];
 8 int n;
 9
10 void Gauss() {
11     for (int k=1; k<=n; ++k) {
12         // 选一行r与第i行交换
13         int r = k;
14         for (int i=k+1; i<=n; ++i)
15             if (fabs(a[i][k]) > fabs(a[r][k])) r = i;
16         if (r != k) for (int j=1; j<=n+1; ++j) swap(a[r][j],a[k][j]);
17         // 消元
18         for (int i=k+1; i<=n; ++i) {
19             double t = a[i][k] / a[k][k];
20             for (int j=k; j<=n+1; ++j) a[i][j] -= t*a[k][j];
21         }
22     }
23     // 回代
24     for (int i=n; i>=1; --i) {
25         for (int j=i+1; j<=n; ++j)
26             a[i][n+1] -= a[j][n+1]*a[i][j];
27         a[i][n+1] /= a[i][i];
28     }
29 }
30 int main () {
31     double x;
32     scanf("%d",&n);
33     for (int i=1; i<=n; ++i)
34         scanf("%lf",&c[i]);
35     for (int i=1; i<=n; ++i)
36         for (int j=1; j<=n; ++j) {
37             scanf("%lf",&x);
38             a[i][j] = (x*2-c[j]*2);
39             a[i][n+1] += (x*x-c[j]*c[j]);
40         }
41     Gauss();
42     for (int i=1; i<n; ++i)
43         printf("%.3lf ",a[i][n+1]);
44     printf("%.3lf",a[n][n+1]);
45     return 0;
46 }

原文地址:https://www.cnblogs.com/mjtcn/p/8425584.html

时间: 2024-11-06 07:40:44

1013: [JSOI2008]球形空间产生器sphere的相关文章

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接

BZOJ 1013 [JSOI2008]球形空间产生器sphere 【高斯消元】

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. HINT 1<=n<=10 提示:给出两个定义:1. 球心:到球面上任意一点距离都相等的点.2. 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 +

【BZOJ】1013: [JSOI2008]球形空间产生器sphere(高斯消元)

http://www.lydsy.com/JudgeOnline/problem.php?id=1013 只要列出方程组就能套高斯来解了. 显然距离相等,所以开不开平方都无所谓. b表示圆心,可列 sigma((x[i][j]-b[j])^2)=sigma((x[i+1][j]-b[j])^2) 化简得 sigma(2*b[j]*(x[i+1][j]-x[i][j]))=sigma(x[i+1][j]^2-x[i][j]^2) 然后就得到n个等式,而且题目保证有解,就套高斯就行了. 第一次学高斯

HYSBZ 1013: [JSOI2008]球形空间产生器sphere(高斯消元啊 模板)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Out

【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到小数点后3位.数

BZOJ 1013 JSOI2008 球形空间产生器sphere 高斯消元

题目大意:给定n维空间下的n+1个点,求这n个点所在的球面的球心 曾经尝试了很久的模拟退火0.0 至今仍未AC 0.0 今天挖粪涂墙怒学了高斯消元-- 我们设球心为X(x1,x2,...,xn) 假设有两点A(a1,a2,...,an)和B(b1,b2,...,bn) 那么我们可以得到两个方程 (x1-a1)^2+(x2-a2)^2+...+(xn-an)^2=r^2 (x1-b1)^2+(x2-b2)^2+...+(xn-bn)^2=r^2 这些方程都是二次的,无法套用高斯消元 但是我们可以做

BZOJ1013: [JSOI2008]球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4485  Solved: 2341[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1

[JSOI2008]球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3131  Solved: 1644[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接