day21&22&23:线程、进程、协程

1、程序工作原理

进程的限制:每一个时刻只能有一个线程来工作。
多进程的优点:同时利用多个cpu,能够同时进行多个操作。缺点:对内存消耗比较高
当进程数多于cpu数量的时候会导致不能被调用,进程不是越多越好,cpu与进程数量相等最好
线程:java和C# 对于一个进程里面的多个线程,cpu都在同一个时刻能使用。py同一时刻只能调用一个。
so:对于型的应用,py效率较java C#低。
多线程优点:共享进程的内存,可以创造并发操作。缺点:抢占资源,
多线程得时候系统在调用的时候需要记录请求上下文的信息,请求上下文的切换 这个过程非常耗时。因此 线程不是越多越好,具体案例具体分析。
在计算机中,执行任务的最小单元就是线程
IO操作不利用CPU,IO密集型操作适合多线程,对于计算密集型适合多进程
GIL:全局解释器锁,PY特有它会在每个进程上加个锁
系统存在进程和线程的目的是为了提高效率
1.1、单进程单线程
1.2、自定义线程:
主进程
主线程
子线程
2、线程锁 threading.RLock和threading.Lock

多线程修改一个数据得时候可能会造成咱数据。建议使用rlock

3、线程时间:threading.Event: 通知
当有进程间的通讯的情况下这个才有应用场景。汽车类比线程,Event.wait()红灯,Event.set()绿灯,Event.clear():使红灯变绿

even是线程间的通讯机制。Event.wait([timeout]):赌赛线程,知道event对象内部标示位被设置为True或超时时间。Event.set():将标识位设为True。Event.clear():标识位设为False。Event.isSet():判断标识位是否为True。

4、queue模块:生产者-消费者模型

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import queue
import threading
# import queue

# q = queue.Queue(maxsize=0)  # 构造一个先进显出队列,maxsize指定队列长度,为0 时,表示队列长度无限制。
#
# q.join()    # 等到队列为空的时候,在执行别的操作
# q.qsize()   # 返回队列的大小 (不可靠)
# q.empty()   # 当队列为空的时候,返回True 否则返回False (不可靠)
# q.full()    # 当队列满的时候,返回True,否则返回False (不可靠)
# q.put(item, block=True, timeout=None) #  将item放入Queue尾部,item必须存在,可以参数block默认为True,表示当队列满时,会等待队列给出可用位置,
# #                          为False时为非阻塞,此时如果队列已满,会引发queue.Full 异常。 可选参数timeout,表示 会阻塞设置的时间,过后,
# #                           如果队列无法给出放入item的位置,则引发 queue.Full 异常
# q.get(block=True, timeout=None) #   移除并返回队列头部的一个值,可选参数block默认为True,表示获取值的时候,如果队列为空,则阻塞,为False时,不阻塞,
# #                       若此时队列为空,则引发 queue.Empty异常。 可选参数timeout,表示会阻塞设置的时候,过后,如果队列为空,则引发Empty异常。
# q.put_nowait(item) #   等效于 put(item,block=False)
# q.get_nowait() #    等效于 get(item,block=False)

message = queue.Queue(10)

def producer(i):
    print("put:",i)
    # while True:
    message.put(i)

def consumer(i):
    # while True:
    msg = message.get()
    print(msg)

for i in range(12):
    t = threading.Thread(target=producer, args=(i,))
    t.start()

for i in range(10):
    t = threading.Thread(target=consumer, args=(i,))
    t.start()
qs = message.qsize()
print("当前消息队列的长度为:%d"%(qs))
print("当前消息队列的长度为:",qs)

queue示例代码

join()方法主线程等待,最多等待时间可以hi设置,eg:t.join(2)

    import threading
    def f0():
        pass
    def f1(a1,a2):
        time.sleep(10)
        f0()
    t = threading.Thread(target=f1,args(111,222,))

    t.setDaemon(True)  #默认false 主线程将等待执行完成后结束,设置为true后主线程将不在等待
    t.start()
    t = threading.Thread(target=f1,args(111,222,))
    t.start()
    t = threading.Thread(target=f1,args(111,222,))
    t.start()
    t = threading.Thread(target=f1,args(111,222,))

t.start()

threading demo

5、进程 :multiprocess是py进程模块

进程之间默认是隔离得,线程的资源默认是共享的

两个进程共享数据需要使用特殊得对象: array:其他语音 或manager.dict()

进程不是,越多越好,建议使用线程池来控制。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from multiprocessing import Pool
import time
def myFun(i):
    time.sleep(2)
    return i+100

def end_call(arg):
    print("end_call",arg)

# print(p.map(myFun,range(10)))
if __name__ == "__main__":
    p = Pool(5)

    for i in range(10):
        p.apply_async(func=myFun,args=(i,),callback=end_call)

    print("end")
    p.close()
    p.join()

porcesspooldemo

#!/usr/bin/env python
# -*- coding:utf-8 -*-

from multiprocessing import  Pool
import time

def f1(a):
    time.sleep(1)
    print(a)
    return 1000
def f2(arg):
    print(arg)

if __name__ =="__main__":
    pool = Pool(5)

    for i in range(50):
        pool.apply_async(func=f1, args=(i,),callback=f2)
        # pool.apply(func=f1, args=(i,))
        print(‘<<=================>>‘)
    pool.close()
    pool.join()

processpooldemo2

6、线程池py没有提供,我们需要自己编写

简单线程池示例:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import queue
import threading
import time

class ThreadPool(object):

    def __init__(self, max_num=20):
        self.queue = queue.Queue(max_num)
        for i in range(max_num):
            self.queue.put(threading.Thread)

    def get_thread(self):
        return self.queue.get()

    def add_thread(self):
        self.queue.put(threading.Thread)

def func(pool,a1):
    time.sleep(2)
    print(a1)
    pool.add_thread()

p = ThreadPool(10)

for i in range(100):
    #获得类
    thread = p.get_thread()
    #对象 = 类()
    #
    t = thread(target=func,args=(p,i,))
    t.start()
"""
pool = ThreadPool(10)

def func(arg, p):
    print arg
    import time
    time.sleep(2)
    p.add_thread()

for i in xrange(30):
    thread = pool.get_thread()
    t = thread(target=func, args=(i, pool))
    t.start()
"""

# p = ThreadPool()
# ret = p.get_thread()
#
# t = ret(target=func,)
# t.start()

复杂的线城池示例:

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import queue
import threading
import contextlib
import time

StopEvent = object()

class ThreadPool(object):

    def __init__(self, max_num, max_task_num = None):
        if max_task_num:
            self.q = queue.Queue(max_task_num)
        else:
            self.q = queue.Queue()
         # 多大容量
        self.max_num = max_num
        self.cancel = False
        self.terminal = False
        # 真实创建的线程列表
        self.generate_list = []
        # 空闲线程数量
        self.free_list = []

    def run(self, func, args, callback=None):
        """
        线程池执行一个任务
        :param func: 任务函数
        :param args: 任务函数所需参数
        :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
        :return: 如果线程池已经终止,则返回True否则None
        """
        if self.cancel:
            return
        if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
            self.generate_thread()
        w = (func, args, callback,)
        self.q.put(w)

    def generate_thread(self):
        """
        创建一个线程
        """
        t = threading.Thread(target=self.call)
        t.start()

    def call(self):
        """
        循环去获取任务函数并执行任务函数
        """
        # 获取当前进程
        current_thread = threading.currentThread()
        self.generate_list.append(current_thread)

        # 取任务
        event = self.q.get()
        while event != StopEvent:
            # 是元组=》是任务
            # 解开任务包
            # 执行任务

            func, arguments, callback = event
            try:
                result = func(*arguments)
                success = True
            except Exception as e:
                success = False
                result = None

            if callback is not None:
                try:
                    callback(success, result)
                except Exception as e:
                    pass

            with self.worker_state(self.free_list, current_thread):
                if self.terminal:
                    event = StopEvent
                else:
                    event = self.q.get()
        else:

            # 不是元组,不是任务
            # 标记:我空闲了
            # 执行后线程死掉
            self.generate_list.remove(current_thread)

    def close(self):
        """
        执行完所有的任务后,所有线程停止
        """
        self.cancel = True
        full_size = len(self.generate_list)
        while full_size:
            self.q.put(StopEvent)
            full_size -= 1

    def terminate(self):
        """
        无论是否还有任务,终止线程
        """
        self.terminal = True

        while self.generate_list:
            self.q.put(StopEvent)

        self.q.empty()

    @contextlib.contextmanager
    def worker_state(self, state_list, worker_thread):
        """
        用于记录线程中正在等待的线程数
        """
        state_list.append(worker_thread)
        try:
            yield
        finally:
            state_list.remove(worker_thread)

# How to use

pool = ThreadPool(5)

def callback(status, result):
    # status, execute action status
    # result, execute action return value
    pass

def action(i):
    print(i)

for i in range(30):
    #将任务放在队列
    #着手开始处理任务
    #创建线程(有空闲线程则不创建;不高于线程池的限制;根据任务个数判断)  =》线程去队列中去任务
    ret = pool.run(action, (i,), callback)

time.sleep(5)
print(len(pool.generate_list), len(pool.free_list))
print(len(pool.generate_list), len(pool.free_list))
# pool.close()
# pool.terminate()

end

原文地址:https://www.cnblogs.com/workherd/p/8809764.html

时间: 2024-11-13 10:02:58

day21&22&23:线程、进程、协程的相关文章

11 线程进程协程

1 线程 1.1 基本应用 1.1.1 标准线程(常用) import threading def f1(arg): print(arg) t = threading.Thread(target=f1, args=(123,)) t.start() 1.1.2 自定义线程 自定义线程类既threading.Thread流程,自定义run方法 import threading class MyThread(threading.Thread): #自定义类,继承threading.Thread类 d

15.python并发编程(线程--进程--协程)

一.进程:1.定义:进程最小的资源单位,本质就是一个程序在一个数据集上的一次动态执行(运行)的过程2.组成:进程一般由程序,数据集,进程控制三部分组成:(1)程序:用来描述进程要完成哪些功能以及如何完成(2)数据集:是程序在执行过程中所需要使用的一切资源(3)进程控制块:用来记录进程外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志.3.进程的作用:是想完成多任务并发,进程之间的内存地址是相互独立的二.线程:1.定义:最小的执行单位,线程的出现是为了

第九天 线程 进程 协程 队列

详细链接http://www.cnblogs.com/alex3714/articles/5230609.html 1.线程:包含在进程中,是操作系统运算调度的最小单位,是一串指令的集合,直接与cpu交互 2进程:进程是一个程序各种资源的集合.操作系统通过管理这个集合进而运行程序,进程本身并不执行,进程通过调用线程来调度cpu. 3.不同点: 一个线程可以控制和操作同一进程里的其他线程,但是进程只能操作子进程 创建新线程很简单,但是创建一个子进程需要对父进程进行拷贝 线程共享内存,进程的内存是独

Python的线程&amp;进程&amp;协程[0] -&gt; 基本概念

基本概念 / Basic Concept 0 简介与动机 / Why Multi-Thread/Multi-Process/Coroutine 在多线程(multithreaded, MT)编程出现之前,计算机程序的执行是由单个步骤序列组成的,该序列在主机的CPU中按照同步顺序执行.即无论任务多少,是否包含子任务,都要按照顺序方式进行. 然而,假定子任务之间相互独立,没有因果关系,若能使这些独立的任务同时运行,则这种并行处理方式可以显著提高整个任务的性能,这便是多线程编程. 而对于Python而

Python的线程&amp;进程&amp;协程[0] -&gt; 线程 -&gt; 多线程的建立与使用

常用的多线程功能实现 目录 生成线程的三种方法 单线程与多线程对比 守护线程的设置 1 生成线程的三种方法 三种方式分别为: 创建一个Thread实例,传给它一个函数 创建一个Thread实例,传给它一个可调用的类实例 派生Thread的子类,并创建子类的实例 # There are three ways to create a thread # The first is create a thread instance, and pass a function # The second one

线程 进程 协程

一.什么是线程? 线程是操作系统能够进行运算调度的最小单位(程序执行流的最小单元).它被包含在进程之中,是进程中的实际运作单位.一条线程指的是一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. 一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成.另外,线程是进程的中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源.一个线程可以创建和撤销另一

Python的线程&amp;进程&amp;协程[0] -&gt; 线程 -&gt; 多线程锁的使用

锁与信号量 目录 添加线程锁 锁的本质 互斥锁与可重入锁 死锁的产生 锁的上下文管理 信号量与有界信号量 1 添加线程锁 由于多线程对资源的抢占顺序不同,可能会产生冲突,通过添加线程锁来对共有资源进行控制. 1 import atexit 2 from random import randrange 3 from threading import Thread, Lock, current_thread # or currentThread 4 from time import ctime, s

Python的线程&amp;进程&amp;协程[1] -&gt; 线程 -&gt; 多线程的控制方式

多线程的控制方式 目录 唤醒单个线程等待 唤醒多个线程等待 条件函数等待 事件触发标志 函数延迟启动 设置线程障碍 1 唤醒单个线程等待 Condition类相当于一把高级的锁,可以进行一些复杂的线程同步控制.一般Condition内部都有一把内置的锁对象(默认为RLock),对于Condition的使用主要有以下步骤: 建立两个线程对象,及Condition对象; 线程1首先获取Condition的锁权限,acquire(); 线程1执行需要完成的任务后,调用等待wait(),此时,线程1会阻

Python的线程&amp;进程&amp;协程[2] -&gt; 进程 -&gt; 多进程的基本使用

多进程的基本使用 1 subprocess 常用函数示例 首先定义一个子进程调用的程序,用于打印一个输出语句,并获取命令行参数 1 import sys 2 print('Called_Function.py called, Hello world.') 3 try: 4 print('Got para', sys.argv[1:]) 5 except: 6 pass 再定义主函数,即父进程,分别测试 run() / call() / check_call() / getstatusoutput

Day9 - 进程、线程、协程篇(二)

本节内容 Gevent协程 Select\Poll\Epoll异步IO与事件驱动 Python连接Mysql数据库操作 RabbitMQ队列 Redis\Memcached缓存 Paramiko SSH Twsited网络框架 协程(单线程下实现多并发的效果) 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程.(CPU不认识协程,是用户自己操作的) 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候