SVM算法总结

svm算法通俗的理解在二维上,就是找一分割线把两类分开,问题是如下图三条颜色都可以把点和星划开,但哪条线是最优的呢,这就是我们要考虑的问题;

首先我们先假设一条直线为 W?X+b =0 为最优的分割线,把两类分开如下图所示,那我们就要解决的是怎么获取这条最优直线呢?及W 和 b 的值;在SVM中最优分割面(超平面)就是:能使支持向量和超平面最小距离的最大值;

我们的目标是寻找一个超平面,使得离超平面比较近的点能有更大的间距。也就是我们不考虑所有的点都必须远离超平面,我们关心求得的超平面能够让所有点中离它最近的点具有最大间距。

如上面假设蓝色的星星类有5个样本,并设定此类样本标记为Y =1,紫色圈类有5个样本,并设定此类标记为 Y =-1,共 T ={(X? ,Y?) , (X?,Y?) (X?,Y?) .........} 10个样本,超平面(分割线)为wx+b=0;  样本点到超平面的几何距离为:

此处要说明一下:函数距离和几何距离的关系;定义上把 样本| w?x?+b|的距离叫做函数距离,而上面公式为几何距离,你会发现当w 和b 同倍数增加时候,函数距离也会通倍数增加;简单个例子就是,样本 X? 到 2wX?+2b =0的函数距离是wX?+b =0的函数距离的 2倍;而几何矩阵不变;

下面我们就要谈谈怎么获取超平面了?!

超平面就是满足支持向量到其最小距离最大,及是求:max [支持向量到超平面的最小距离] ;那只要算出支持向量到超平面的距离就可以了吧 ,而支持向量到超平面的最小距离可以表示如下公式:

故最终优化的的公式为:

根据函数距离和几何距离可以得知,w和b增加时候,几何距离不变,故怎能通过同倍数增加w和 b使的支持向量(距离超平面最近的样本点)上样本代入 y(w*x+b) =1,而不影响上面公式的优化,样本点距离如下:如上图其r1函数距离为1,k1函数距离为1,而其它

样本点的函数距离大于1,及是:y(w?x+b)>=1,把此条件代入上面优化公式候,可以获取新的优化公式1-3:

公式1-3见下方:优化最大化分数,转化为优化最小化分母,为了优化方便转化为公式1-4

为了优化上面公式,使用拉格朗日公式和KTT条件优化公式转化为:

对于上面的优化公式在此说明一下:比如我们的目标问题是 minf(x)。可以构造函数L(a,b,x):

L(a,b,x)=f(x)+a?g(x)+b?h(x),a≥0

此时 f(x) 与 maxa,bL(a,b,x) 是等价的。因为 h(x)=0,g(x)≤0,a?g(x)≤0,所以只有在a?g(x)=0 的情况下

L(a,b,x) 才能取得最大值,因此我们的目标函数可以写为minxmaxa,bL(a,b,x)。如果用对偶表达式:maxa,bminxL(a,b,x),

由于我们的优化是满足强对偶的(强对偶就是说对偶式子的最优值是等于原问题的最优值的),所以在取得最优值x? 的条件下,它满足 :

f(x?)=maxa,bminxL(a,b,x)=minxmaxa,bL(a,b,x)=f(x?),

结合上面的一度的对偶说明故我们的优化函数如下面,其中a >0

现在的优化方案到上面了,先求最小值,对 w 和 b 分别求偏导可以获取如下公式:

把上式获取的参数代入公式优化max值:

化解到最后一步,就可以获取最优的a值:

以上就可以获取超平面!

但在正常情况下可能存在一些特异点,将这些特异点去掉后,剩下的大部分点都能线性可分的,有些点线性不可以分,意味着此点的函数距离不是大于等于1,而是小于1的,为了解决这个问题,我们引进了松弛变量 ε>=0; 这样约束条件就会变成为:

故原先的优化函数变为:

对加入松弛变量后有几点说明如下图所以;距离小于1的样本点离超平面的距离为d ,在绿线和超平面之间的样本点都是由损失的,

其损失变量和距离d 的关系,可以看出 ξ = 1-d , 当d >1的时候会发现ξ =0,当 d<1 的时候 ξ = 1-d ;故可以画出损失函数图,如下图1-7;样式就像翻书一样,我们把这个损失函数叫做 hinge损失;

下面我们简单的就来讨论一下核函数:核函数的作用其实很简单就是把低维映射到高维中,便于分类。核函数有高斯核等,下面就直接上图看参数对模型的影响,从下图可以了解,当C变化时候,容错变小,泛化能力变小;当选择高斯核函数的时候,随时R参数调大,准确高提高,最终有过拟合风险;

下面就直接上代码了(鸢尾花SVM二特征分类):

[python] view plain copy

  1. iris_feature = u‘花萼长度‘, u‘花萼宽度‘, u‘花瓣长度‘, u‘花瓣宽度‘
  2. if __name__ == "__main__":
  3. path = ‘iris.data‘  # 数据文件路径
  4. data = pd.read_csv(path, header=None)
  5. x, y = data[range(4)], data[4]
  6. y = pd.Categorical(y).codes
  7. x = x[[0, 1]]
  8. x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)
  9. # 分类器
  10. clf = svm.SVC(C=0.3, kernel=‘linear‘, decision_function_shape=‘ovo‘)
  11. clf.fit(x_train, y_train.ravel())
  12. # 准确率
  13. print clf.score(x_train, y_train)  # 精度
  14. print ‘训练集准确率:‘, accuracy_score(y_train, clf.predict(x_train))
  15. print clf.score(x_test, y_test)
  16. print ‘测试集准确率:‘, accuracy_score(y_test, clf.predict(x_test))
  17. x1_min, x2_min = x.min()
  18. x1_max, x2_max = x.max()
  19. x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j]  # 生成网格采样点
  20. grid_test = np.stack((x1.flat, x2.flat), axis=1)  # 测试点
  21. print ‘grid_test = \n‘, grid_test
  22. Z = clf.decision_function(grid_test)
  23. Z = Z[:,0].reshape(x1.shape)
  24. print "decision_function:",Z
  25. grid_hat = clf.predict(grid_test)
  26. grid_hat = grid_hat.reshape(x1.shape)
  27. mpl.rcParams[‘font.sans-serif‘] = [u‘SimHei‘]
  28. mpl.rcParams[‘axes.unicode_minus‘] = False
  29. cm_light = mpl.colors.ListedColormap([‘#A0FFA0‘, ‘#FFA0A0‘, ‘#A0A0FF‘])
  30. cm_dark = mpl.colors.ListedColormap([‘g‘, ‘r‘, ‘b‘])
  31. plt.figure(facecolor=‘w‘)
  32. plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
  33. plt.scatter(x[0], x[1], c=y, edgecolors=‘k‘, s=50, cmap=cm_dark)      # 样本
  34. plt.scatter(x_test[0], x_test[1], s=120, facecolors=‘none‘, zorder=10)     # 圈中测试集样本
  35. plt.xlabel(iris_feature[0], fontsize=13)
  36. plt.ylabel(iris_feature[1], fontsize=13)
  37. plt.xlim(x1_min, x1_max)
  38. plt.ylim(x2_min, x2_max)
  39. plt.title(u‘鸢尾花SVM二特征分类‘, fontsize=16)
  40. plt.grid(b=True, ls=‘:‘)
  41. plt.show()

最后画图如下:

原文地址:https://www.cnblogs.com/ws0751/p/8408673.html

时间: 2024-08-29 12:57:01

SVM算法总结的相关文章

SVM算法

摘要:SVM(支持向量机)算法是一种典型的监督式学习算法.介绍SVM算法的思想和应用. 关键词:机器学习   SVM    支持向量机 SVM(Support Vector Machine)支持向量机,简称SV机,一种监督式学习算法,广泛地应用于统计分类和回归分析中. SVM算法的思想可以概括为两点. 第一点:SVM是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本映射到高维特征空间使其线性可分,从而使得高维特征空间采用采用线性算法对样本的非线

SVM算法推导

1,SVM算法的思考出发点 SVM算法是一种经典的分类方法.对于线性可分问题,找到那个分界面就万事大吉了.这个分界面可以有很多,怎么找呢?SVM是要找到最近点距离最远的那个分界面.有点绕,看下面的图就明白了 为了推导简单,我们先假设样本集是完全线性可分的,也就一个分界面能达到100%的正确率. 2,线性可分的情况 (1)优化目标的建立 最近点距离最远的分界面,这句话得用数学式子表示出来,这样才能用数学工具进行求解. 首先,假设分界面是y=wx+b,点\(x_i\)距离平面的距离用数学表达是\(\

机器学习笔记—svm算法(上)

本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可

程序员训练机器学习 SVM算法分享

http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文主要阐述了SVM是如何进行工作的,同时也给出了使用Python Scikits库的几个示例.SVM作为一种训练机器学习的算法,可以用于解决分类和回归问题,还使用了kernel trick技术进行数据的转换,再根据转换信息在可能的输出之中找到一个最优的边界. [CSDN报道]支持向量机(Support

python 实现 svm算法

svm算法,说到底就是二次优化问题. 带有约束的二次优化问题. 1.线性优化问题,课件Leture5-QP 参考 https://www.coin-or.org/PuLP/CaseStudies/a_blending_problem.html python代码: # problemdef qp_test1(): prob = LpProblem("qp_test1", LpMinimize) x1 = LpVariable("x1", 0, None, LpInte

从Loagistic 到 SVM算法

SVM(支持向量机),一种二类分类器,之所以称之为向量机,是因为它本身就产生一个二值决策结果,即使一种决策"机",支持向量机的泛化错误低(具有结构风险最小),具有很强的学习能力,因此很多人认为它是最好的监督学习算法. SVM与Logistic回归的联系: logistic回归的目的就是从特征值中学习出一个0/1分类模型.而这个模型的输入是将特征的线性组合作为自变量,由于sigmod函数的自变量具有从负无穷到正无穷的输入范围,因此它可以把任何一个输入映射到0/1 sigmod函数的形式化

SVM算法入门

转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法

转载:scikit-learn学习之SVM算法

转载,http://blog.csdn.net/gamer_gyt 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处,谢谢 =====================================================================

Spark MLlib SVM算法

1.1 SVM支持向量机算法 支持向量机理论知识参照以下文档: 支持向量机SVM(一) http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982639.html 支持向量机SVM(二) http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982684.html 支持向量机(三)核函数 http://www.cnblogs.com/jerrylead/archive/2011/03/18/

scikit-learn学习之SVM算法

====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处,谢谢 ====================================================================== 机器学习中的算法(2)-支持向量机(SVM)基础 关于SVM一篇比较全介绍的博文