无梯度优化算法

无梯度优化算法的相关文章

梯度优化算法总结(转载)以及solver中相关参数解释

原文地址:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误,还望读者能不吝指出.另外,由于原文太长,分了两部分翻译,本篇主要是梯度下降优化算法的总结,下篇将会是随机梯度的并行和分布式,以及优化策略的总结. 梯度下降是优化中最流行的算法之一,也是目前用于优化神经网络最常用到的方法.同时,每个优秀的深度学习库都包含了优化梯度下降的多种算法的实现(比如, las

细菌觅食优化算法:理论基础,分析,以及应用(未完)

原作者:Swagatam Das,Arijit Biswas,Sambarta Dasgupta,和Ajith Abraham  [摘 要]细菌觅食优化算法(Bacterial foraging optimization algorithm[BFOA])已经被分布式优化和控制的同行们当作一种全局性的优化算法接受.BFOA是由大肠杆菌的群体觅食行为所启发而总结出来 的.BFOA已经吸引了足够多的研究者的注意,由于它出现在解决真实世界中一些应用领域上优化问题的高效性.E.coli 的群体策略的生物基

机器学习最常用优化之一——梯度下降优化算法综述

转自:http://www.dataguru.cn/article-10174-1.html 梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法.几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现.但是,它们就像一个黑盒优化器,很难得到它们优缺点的实际解释.这篇文章旨在提供梯度下降算法中的不同变种的介绍,帮助使用者根据具体需要进行使用. 这篇文章首先介绍梯度下降算法的三种框架,然后介绍它们所存在的

深度解读最流行的优化算法:梯度下降

深度解读最流行的优化算法:梯度下降 By 机器之心2016年11月21日 15:08 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战.(本文的中文版 PDF 下载地址) 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent)

梯度下降优化算法综述

本文翻译自Sebastian Ruder的"An overview of gradient descent optimization algoritms",作者首先在其博客中发表了这篇文章,其博客地址为:An overview of gradient descent optimization algoritms,之后,作者将其整理完放在了arxiv中,其地址为:An overview of gradient descent optimization algoritms,在翻译的过程中以

梯度下降优化算法综述(翻译)

原文链接:http://sebastianruder.com/optimizing-gradient-descent 原文题目:An overview of gradient descent optimization algorithms 博文地址:http://blog.csdn.net/wangxinginnlp/article/details/50974594 梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法.与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降

优化算法—梯度下降

转自:https://www.cnblogs.com/shixiangwan/p/7532858.html 梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法.本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法.我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是机器学习算法)的过程中可能遇到的挑战. 目录: 梯度下降的各种变体 批量梯度下降(Batch gradient descent) 随机梯度下降

优化算法——拟牛顿法之DFP算法

一.牛顿法 在博文"优化算法--牛顿法(Newton Method)"中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快.在牛顿法中使用到了函数的二阶导数的信息,对于函数,其中表示向量.在牛顿法的求解过程中,首先是将函数在处展开,展开式为: 其中,,表示的是目标函数在的梯度,是一个向量.,表示的是目标函数在处的Hesse矩阵.省略掉最后面的高阶无穷小项,即为: 上式两边对求导,即为: 在基本牛顿法中,取得最值的点处的导数值为,即上式左侧为.则: 求出其中的:

优化算法——拟牛顿法之BFGS算法

一.BFGS算法简介 BFGS算法是使用较多的一种拟牛顿方法,是由Broyden,Fletcher,Goldfarb,Shanno四个人分别提出的,故称为BFGS校正. 同DFP校正的推导公式一样,DFP校正见博文"优化算法--拟牛顿法之DFP算法".对于拟牛顿方程: 可以化简为: 令,则可得: 在BFGS校正方法中,假设: 二.BFGS校正公式的推导 令,其中均为的向量.,. 则对于拟牛顿方程可以化简为: 将代入上式: 将代入上式: 已知:为实数,为的向量.上式中,参数和解的可能性有