垃圾收集器与内存分配策略(三)之HotSpot的算法实现

垃圾收集器与内存分配策略(三)——HotSpot的算法实现

Java

JVM

垃圾回收

  在HotSpot虚拟机上实现这些算法时,必须对算法的执行效率有着严格的考量,才能保证虚拟机高效地运行。

1、 枚举根节点

  采用可达性分析从GC Roots节点中找引用链为例

  存在的缺点:

  1、在前面找出还存活对象时,采用可达性分析从GC Roots节点中找引用链时,可作为GC Roots的节点主要在全局性的引用(方法区的常量或类静态属性引用)与执行上下文(虚拟机栈栈帧中的本地变量表或本地方法栈中的Native方法的引用)中,很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,必然会消耗很多时间。

  2、可达性分析对时间的敏感还体现在GC停顿上,因为这项工作必须在一个能确保一致性的快照中进行。“一致性值的是”GC进行时必须停顿所有Java执行线程(Stop The World)。

  HotSpot的解决方式

  1、当执行系统停下来时,不需要检查完所有的全局和执行上下文的引用位置,HotSpot采用一组称为OopMap的数据结构来记录那些地方存放着对象的引用。

  2、JIT(即时编译)编译过程中也会在特定位置记录下栈和寄存器中那些位置是引用。

2、 安全点

  如果为每一条指令都生成对应的Oopmap,会需要大量的额外空间,GC成本增高。其实HotSpot虚拟机并不是在为每条指令都生成了Oopmap,程序执行时也并非在任何地方都能停下来开始GC,只能到达特定位置才能开始记录,这些特定位置称为安全点(Safepoint)。

  安全点的选择:是否具有让程序长时间执行的特征(比如:方法调用,循环跳转,异常跳转等)。

  在GC发生时如何让所有线程跑到最近的安全点再停止有二种方案:

  1、抢先式中断:不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。 现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。

  2、主动式中断:当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。

3、 安全区域

  当程序不执行的时候即没有分配CPU时间,比如:线程处于Sleep状态或Blocked状态,对于这种情况就需要安全区域(Safe Region)来解决。

  安全区域指在一段代码片段中,引用关系不会发生变化。在这个区域的任意地方开始GC都是安全的,或则可以将安全区域看做时扩展过得安全点。

  安全区域工作原理:在线程中执行到安全区域的代码时,首先标识自己已经进入了安全区域,若在这段时间JVM要发起GC时,就不用管标识自己为安全区域状态的线程了。在线程执行完安全区域的代码要离开安全区域时,当前线程要检查当前系统是否已经完成了根节点枚举(或是整个GC过程),若系统已完成则可以离开安全区域;若系统未完成,则它就必须等待直到可以离开安全区域为止。

时间: 2024-08-05 10:55:26

垃圾收集器与内存分配策略(三)之HotSpot的算法实现的相关文章

垃圾收集器与内存分配策略(三)

1.对象优先在Eden分配    大多数情况下,对象在新生代Eden区中分配.当Eden区中没有足够空间进行分配时,虚拟机会发起一次Minor GC. ps:Minor GC 和 Full GC 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度会比较快: 老生代GC(Full GC/Major GC):指发生在老年代的GC,出现了Full GC一般会伴有至少一次的Minor GC.Full GC的速

第三章 垃圾收集器和内存分配策略

第三章 垃圾收集器和内存分配策略 对象已死吗 引用计算方法 可达性分析算法 通过一些列的GC roots 对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径成为引用链,当一个对象到GC roots 没有任何引用链的则证明对象不可用的 虚拟机栈中的引用的对象 方法区中类静态属性引用的对象 方法去区中常量引用的对象 本地方法栈中JNI引用的对象 生存还是死亡 一次筛选,筛选是否有必要执行 finalize()方法 没有覆盖或者finalize()已经被调用过  视为没必要执行 放入一个F-Qu

垃圾收集器以及内存分配策略

垃圾回收 垃圾回收的三个问题: 哪些内存需要回收? 什么时候回收? 如何回收? 1.哪些对象需要回收? 判断对象是否存活的办法: 引用计数算法:给对象中添加一个引用计数器,有一个地方引用就+1,引用失效就-1.只要计数器为0则对象已死. 优点:简单易实现: 缺点:无法解决对象之间相互引用的问题.(JVM也因为此种原因没有使用它) 根搜索算法: 通过选取出一个GC Roots对象,已它作为起始点,如果对象不可达,则对象已死. GC Roots对象: 虚拟机栈中引用的对象 方法区中类静态属性引用的对

Java虚拟机垃圾收集器与内存分配策略

Java虚拟机垃圾收集器与内存分配策略 概述 那些内存需要回收,什么时候回收,如何回收是GC需要完成的3件事情. 程序计数器,虚拟机栈与本地方法栈这三个区域都是线程私有的,内存的分配与回收都具有确定性,内存随着方法结束或者线程结束就回收了. java堆与方法区在运行期才知道创建那些对象,这部分内存分配是动态的,本章笔记中分配与回收的内存指的就是:java堆与方法区. 判断对象已经死了 引用计数算法:给对象添加一个引用计数器,每当有一个地方引用它,计数器+1;引用失败,计数器-1.计数器为0则改判

深入理解java虚拟机----->垃圾收集器与内存分配策略(下)

1.  前言 内存分配与回收策略 JVM堆的结构分析(新生代.老年代.永久代) 对象优先在Eden分配 大对象直接进入老年代 长期存活的对象将进入老年代 动态对象年龄判定 空间分配担保  2.  垃圾收集器与内存分配策略 Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决两个问题: 给对象分配内存; 回收分配给对象的内存. 对象的内存分配,往大方向上讲就是在堆上的分配,对象主要分配在新生代的Eden区上.少数也可能分配在老年代,取决于哪一种垃圾收集器组合,还有虚拟机中的相关内存的参

垃圾收集器与内存分配策略(二)

垃圾收集算法简介 1.标记-清除算法       标记-清除算法主要分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一进行回收.对象的标记过程在垃圾收集器与内存分配策略(一)中已经介绍过. 存在的问题:一是效率问题,标记和清除的效率都不高:二是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时无法找到足够的内存而不得不提前触发另一次垃圾收集动作. 2.复制算法       复制算法:它将内存按照容量划分为大小

垃圾收集器与内存分配策略(四)之垃圾收集器

垃圾收集器与内存分配策略(四)--垃圾收集器 收集算法是内存回收的方法论,垃圾收集器则是内存回收的具体实现. 垃圾收集器介绍 在垃圾收集器的层面上对并行与并发的解释: 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户现场仍处于等待状态. 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但并不一定是并行的,可能会交替执行),用户程序仍在继续执行,而垃圾收集程序运行于另一个CPU上. 对于不同的厂商,不同的版本的虚拟机都可能有很大的差别.此处讨论的是jdk1.7之后的

垃圾收集器与内存分配策略(六)之内存分配与回收策略

垃圾收集器与内存分配策略(六)--内存分配与回收策略 对象的内存分配,一般来说就是在堆上的分配(但也可能经过JIT编译后被拆散为标量类型并间接地栈上分配),对象分配的细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数设置. 区分Minor GC与 Full GC: 新生代GC(Minor GC):指发生在新生代的的垃圾收集动作,因为Java对象大多具有朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快. 老年代GC(Full GC / Major GC):老

垃圾收集器与内存分配策略(五)之垃圾日志与常见参数

垃圾收集器与内存分配策略(五)--垃圾日志与常见参数 理解GC日志 每个收集器的日志格式都可以不一样,但各个每个收集器的日志都维持一定的共性.如下面二段日志: 33.125: [GC [DefNew: 3324K->152K(3712K), 0.0025925 secs] 3324K->152K(11904K), 0.0031680 secs] 100.667: [Full GC [Tenured: 0K->210K(10240K), 0.0149142 secs] 4603K->