机器学习实战之第二章 k-近邻算法

第2章 k-近邻算法

KNN 概述

k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的.

KNN 场景

电影可以按照题材分类,那么如何区分 动作片 和 爱情片 呢?

  1. 动作片:打斗次数更多
  2. 爱情片:亲吻次数更多

基于电影中的亲吻、打斗出现的次数,使用 k-近邻算法构造程序,就可以自动划分电影的题材类型。

现在根据上面我们得到的样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到 k 个距离最近的电影。
假定 k=3,则三个最靠近的电影依次是, He‘s Not Really into Dudes 、 Beautiful Woman 和 California Man。
knn 算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

KNN 原理

KNN 工作原理

  1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
  2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    1. 计算新数据与样本数据集中每条数据的距离。
    2. 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    3. 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
  3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。

KNN 开发流程

收集数据:任何方法
准备数据:距离计算所需要的数值,最好是结构化的数据格式
分析数据:任何方法
训练算法:此步骤不适用于 k-近邻算法
测试算法:计算错误率
使用算法:输入样本数据和结构化的输出结果,然后运行 k-近邻算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

KNN 算法特点

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

KNN 项目案例

项目案例1: 优化约会网站的配对效果

项目概述

海伦使用约会网站寻找约会对象。经过一段时间之后,她发现曾交往过三种类型的人:

  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人

她希望:

  1. 工作日与魅力一般的人约会
  2. 周末与极具魅力的人约会
  3. 不喜欢的人则直接排除掉

现在她收集到了一些约会网站未曾记录的数据信息,这更有助于匹配对象的归类。

开发流程

收集数据:提供文本文件
准备数据:使用 Python 解析文本文件
分析数据:使用 Matplotlib 画二维散点图
训练算法:此步骤不适用于 k-近邻算法
测试算法:使用海伦提供的部分数据作为测试样本。
        测试样本和非测试样本的区别在于:
            测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

收集数据:提供文本文件

海伦把这些约会对象的数据存放在文本文件 datingTestSet2.txt 中,总共有 1000 行。海伦约会的对象主要包含以下 3 种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

文本文件数据格式如下:

40920	8.326976	0.953952	3
14488	7.153469	1.673904	2
26052	1.441871	0.805124	1
75136	13.147394	0.428964	1
38344	1.669788	0.134296	1

准备数据:使用 Python 解析文本文件

将文本记录转换为 NumPy 的解析程序

def file2matrix(filename):
   """
   Desc:
       导入训练数据
   parameters:
       filename: 数据文件路径
   return:
       数据矩阵 returnMat 和对应的类别 classLabelVector
   """
   fr = open(filename)
   # 获得文件中的数据行的行数
   numberOfLines = len(fr.readlines())
   # 生成对应的空矩阵
   # 例如:zeros(2,3)就是生成一个 2*3的矩阵,各个位置上全是 0
   returnMat = zeros((numberOfLines, 3))  # prepare matrix to return
   classLabelVector = []  # prepare labels return
   fr = open(filename)
   index = 0
   for line in fr.readlines():
       # str.strip([chars]) --返回移除字符串头尾指定的字符生成的新字符串
       line = line.strip()
       # 以 ‘\t‘ 切割字符串
       listFromLine = line.split(‘\t‘)
       # 每列的属性数据
       returnMat[index, :] = listFromLine[0:3]
       # 每列的类别数据,就是 label 标签数据
       classLabelVector.append(int(listFromLine[-1]))
       index += 1
   # 返回数据矩阵returnMat和对应的类别classLabelVector
   return returnMat, classLabelVector

分析数据:使用 Matplotlib 画二维散点图

import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2], 15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()

下图中采用矩阵的第一和第三列属性得到很好的展示效果,清晰地标识了三个不同的样本分类区域,具有不同爱好的人其类别区域也不同。

序号 玩视频游戏所耗时间百分比 每年获得的飞行常客里程数 每周消费的冰淇淋公升数 样本分类
1 0.8 400 0.5 1
2 12 134 000 0.9 3
3 0 20 000 1.1 2
4 67 32 000 0.1 2

样本3和样本4的距离: $$\sqrt{(0-67)^2 + (20000-32000)^2 + (1.1-0.1)^2 }$$

归一化特征值,消除特征之间量级不同导致的影响

def autoNorm(dataSet):
    """
    Desc:
        归一化特征值,消除特征之间量级不同导致的影响
    parameter:
        dataSet: 数据集
    return:
        归一化后的数据集 normDataSet. ranges和minVals即最小值与范围,并没有用到

    归一化公式:
        Y = (X-Xmin)/(Xmax-Xmin)
        其中的 min 和 max 分别是数据集中的最小特征值和最大特征值。该函数可以自动将数字特征值转化为0到1的区间。
    """
    # 计算每种属性的最大值、最小值、范围
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    # 极差
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    # 生成与最小值之差组成的矩阵
    normDataSet = dataSet - tile(minVals, (m, 1))
    # 将最小值之差除以范围组成矩阵
    normDataSet = normDataSet / tile(ranges, (m, 1))  # element wise divide
    return normDataSet, ranges, minVals

训练算法:此步骤不适用于 k-近邻算法

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

测试算法:使用海伦提供的部分数据作为测试样本。如果预测分类与实际类别不同,则标记为一个错误。

kNN 分类器针对约会网站的测试代码

def datingClassTest():
    """
    Desc:
        对约会网站的测试方法
    parameters:
        none
    return:
        错误数
    """
    # 设置测试数据的的一个比例(训练数据集比例=1-hoRatio)
    hoRatio = 0.1  # 测试范围,一部分测试一部分作为样本
    # 从文件中加载数据
    datingDataMat, datingLabels = file2matrix(‘input/2.KNN/datingTestSet2.txt‘)  # load data setfrom file
    # 归一化数据
    normMat, ranges, minVals = autoNorm(datingDataMat)
    # m 表示数据的行数,即矩阵的第一维
    m = normMat.shape[0]
    # 设置测试的样本数量, numTestVecs:m表示训练样本的数量
    numTestVecs = int(m * hoRatio)
    print ‘numTestVecs=‘, numTestVecs
    errorCount = 0.0
    for i in range(numTestVecs):
        # 对数据测试
        classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f" % (errorCount / float(numTestVecs))
    print errorCount

使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

约会网站预测函数

def clasdifyPerson():
    resultList = [‘not at all‘, ‘in small doses‘, ‘in large doses‘]
    percentTats = float(raw_input("percentage of time spent playing video games ?"))
    ffMiles = float(raw_input("frequent filer miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix(‘datingTestSet2.txt‘)
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMils, percentTats, iceCream])
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels, 3)
    print "You will probably like this person: ", resultList[classifierResult - 1]

实际运行效果如下:

>>> kNN.classifyPerson()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
You will probably like this person: in small doses

完整代码地址https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py

项目案例2: 手写数字识别系统

项目概述

构造一个能识别数字 0 到 9 的基于 KNN 分类器的手写数字识别系统。

需要识别的数字是存储在文本文件中的具有相同的色彩和大小:宽高是 32 像素 * 32 像素的黑白图像。

开发流程

收集数据:提供文本文件。
准备数据:编写函数 img2vector(), 将图像格式转换为分类器使用的向量格式
分析数据:在 Python 命令提示符中检查数据,确保它符合要求
训练算法:此步骤不适用于 KNN
测试算法:编写函数使用提供的部分数据集作为测试样本,测试样本与非测试样本的
         区别在于测试样本是已经完成分类的数据,如果预测分类与实际类别不同,
         则标记为一个错误
使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取
         数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

收集数据: 提供文本文件

目录 trainingDigits 中包含了大约 2000 个例子,每个例子内容如下图所示,每个数字大约有 200 个样本;目录 testDigits 中包含了大约 900 个测试数据。

准备数据: 编写函数 img2vector(), 将图像文本数据转换为分类器使用的向量

将图像文本数据转换为向量

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readLine()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

分析数据:在 Python 命令提示符中检查数据,确保它符合要求

在 Python 命令行中输入下列命令测试 img2vector 函数,然后与文本编辑器打开的文件进行比较:

>>> testVector = kNN.img2vector(‘testDigits/0_13.txt‘)
>>> testVector[0,0:31]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> testVector[0,31:63]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

训练算法:此步骤不适用于 KNN

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

测试算法:编写函数使用提供的部分数据集作为测试样本,如果预测分类与实际类别不同,则标记为一个错误

def handwritingClassTest():
    # 1. 导入训练数据
    hwLabels = []
    trainingFileList = listdir(‘input/2.KNN/trainingDigits‘)  # load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    # hwLabels存储0~9对应的index位置, trainingMat存放的每个位置对应的图片向量
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split(‘.‘)[0]  # take off .txt
        classNumStr = int(fileStr.split(‘_‘)[0])
        hwLabels.append(classNumStr)
        # 将 32*32的矩阵->1*1024的矩阵
        trainingMat[i, :] = img2vector(‘input/2.KNN/trainingDigits/%s‘ % fileNameStr)

    # 2. 导入测试数据
    testFileList = listdir(‘input/2.KNN/testDigits‘)  # iterate through the test set
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split(‘.‘)[0]  # take off .txt
        classNumStr = int(fileStr.split(‘_‘)[0])
        vectorUnderTest = img2vector(‘input/2.KNN/testDigits/%s‘ % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount / float(mTest))

使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

完整代码地址https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py


时间: 2024-11-29 06:20:40

机器学习实战之第二章 k-近邻算法的相关文章

《机器学习实战》学习笔记——k近邻算法

1.numpy中一些函数的用法学习 shape()用法: shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions.. shape返回一个元组,依次为各维度的长度.shape[0]:第一维长度,shape[1]:第二维长度. tile()用法: numpy.tile(A, reps) Construct an array by repea

第2章 K近邻算法实战(KNN)

1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels ##print(create

《统计学习方法》:第三章 K 近邻算法

k -- NN k--NN 是一种基本分类和回归方法.对新实例进行分类时,通过已经训练的数据求出 k 个最近实例,通过多数表决进行分类.故 k 邻近算法具有不显式的学习过程. 三个基本要素:k 值选择,距离度量,分类决策规则. 1. k 近邻算法 原理:给定一个训练集,对于新输入的实例,在训练集中找到与其相似的 k 个实例,这 k 个实例的多数属于某一类,就将该实例归属到这一类. 输入:训练数据集 \(T = \{(x_1,y_1),(x_2,y_2),...,(x_3,y_3)\}\) 其中,

web安全之机器学习入门——3.1 KNN/k近邻算法

目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell sklearn.neighbors.NearestNeighbors 参数: 方法: 基础用法 print(__doc__) from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-1, -1],

机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

属原创文章,欢迎转载,但请注明出处:http://www.cnblogs.com/hemiy/p/6155425.html 谢谢! 代码及数据-->https://github.com/Wellat/MLaction 1 算法概述 1.1 算法特点 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称型 1.2 工作原理 存在一个训练样本集,并且每个样本都存在标签(有监督学习)

机器学习实战笔记-K近邻算法1(分类动作片与爱情片)

K近邻算法采用测量不同特征值之间的距离方法进行分类 K近邻算法特点: 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. K近邻算法原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的 特征进行比较,然后算法提取样本集中特征最相似数据(最近 邻)的分类标签.一般来说,我们只选择样本数据集中前k个最

机器学习实战笔记-K近邻算法2(改进约会网站的配对效果)

案例二.:使用K-近邻算法改进约会网站的配对效果 案例分析: 海伦收集的数据集有三类特征,分别是每年获得的飞行常客里程数.玩视频游戏所耗时间百分比. 每周消费的冰淇淋公升数.我们需要将新数据的每个新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 流程:在约会网站上使用K

机器学习实战笔记--k近邻算法

1 #encoding:utf-8 2 from numpy import * 3 import operator 4 import matplotlib 5 import matplotlib.pyplot as plt 6 7 from os import listdir 8 9 def makePhoto(returnMat,classLabelVector): #创建散点图 10 fig = plt.figure() 11 ax = fig.add_subplot(111) #例如参数为

机器学习随笔01 - k近邻算法

算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重