maxout激活函数

  maxout的拟合能力是非常强的,它可以拟合任意的的凸函数。最直观的解释就是任意的凸函数都可以由分段线性函数以任意精度拟合(学过高等数学应该能明白),而maxout又是取k个隐隐含层节点的最大值,这些”隐隐含层"节点也是线性的,所以在不同的取值范围下,最大值也可以看做是分段线性的(分段的个数与k值有关)。论文中的图1如下(它表达的意思就是可以拟合任意凸函数,当然也包括了ReLU了):

时间: 2024-12-25 16:39:56

maxout激活函数的相关文章

深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一动卷积计算的形式了",原因是很多工作证明了,在基本的CNN卷积计算模式之外,很多简

ReLU 和sigmoid 函数对比

详细对比请查看:http://www.zhihu.com/question/29021768/answer/43517930 . 激活函数的作用: 是为了增加神经网络模型的非线性.否则你想想,没有激活函数的每层都相当于矩阵相乘.就算你叠加了若干层之后,无非还是个矩阵相乘罢了.所以你没有非线性结构的话,根本就算不上什么神经网络. 2. 为什么ReLU效果好: 重点关注这章6.6节:Piecewise Linear Hidden Unitshttp://www.iro.umontreal.ca/~b

H2O’s Deep Learning

简介 H2O的深度学习基于多层前馈人工神经网络,该网络是由使用了反向传播的随机梯度下降算法训练而来该网络可以包含大量由携带tanh.rectifier.maxout激活函数的神经元组成的隐藏层.如自适应学习率.率退火.动量训练.dropout, L1 or L2 regularization, checkpointing, and grid等高级特性的研究得到高预测准确度.每个计算节点在本地数据上用多线程训练一个全局模型参数的拷贝,通过网络周期地向全局模型传输. 前馈人工神经网络(ANN)模型,

cs231n 卷积神经网络与计算机视觉 5 神经网络基本结构 激活函数总结

1 引入 神经网络中的神经元的灵感来源于人脑,人体中大约有860亿个神经元,大约有 10^14 - 10^15 突触(synapses). 每个神经元由树突dendrites接收信号 轴突axon发射信号. 轴突又连接到其他神经单元 的树突.突触强度synaptic strengths (权重w) 可以经过学习控制输入信号的输出是抑制还是激活( excitory (positive weight) or inhibitory (negative weight)) . 如果经过细胞体汇合之后的信号

[转]神经网络-激活函数

神经网络之激活函数(Activation Function) 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/50593400 日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid.ReLU等等.不过好像忘了问自己一(n)件事: 为什么需要激

论文笔记 《Maxout Networks》 && 《Network In Network》

论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxout:http://arxiv.org/pdf/1302.4389v4.pdfNIN:http://arxiv.org/abs/1312.4400 参考 maxout和NIN具体内容不作解释下,可以参考:Deep learning:四十五(maxout简单理解)Network In Network 各用一句话

激活函数()(转)

神经网络之激活函数(Activation Function) 转载::http://blog.csdn.net/cyh_24 :http://blog.csdn.net/cyh_24/article/details/50593400 日常 coding 中,我们会很自然的使用一些激活函数,比如:sigmoid.ReLU等等.不过好像忘了问自己一(n)件事: 为什么需要激活函数? 激活函数都有哪些?都长什么样?有哪些优缺点? 怎么选用激活函数? 本文正是基于这些问题展开的,欢迎批评指正! (此图并

《Noisy Activation Function》噪声激活函数(一)

本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51736830 Noisy Activation Functions是ICML 2016年新发表的一篇关于激活函数的论文,其中对以往的激活函数进行了深入的分析,并提出了训练过程中添加噪声的新方法,效果不错,觉得很有意义,目测会在今后的深度学习领域产生比较大的影响,因此将其原论文翻译,并略作注解(计划分两篇博客来写,本文涵盖从摘要到第三节的

激活函数与权值初始化

1.sigmod函数--(tf.nn.sigmoid()) sigmod函数性质: 1.如图像所示其值域在[0,1]之间,函数输出不是0均值的,权重更新效率降低,因为这会导致后层的神经元的输入是非0均值的信号,这会对梯度产生影响:假设后层神经元的输入都为正(e.g. x>0 elementwise in ),那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果,使得收敛缓慢. 当然了,如果你是按batch去训练,那么每个batch可能得