算法学习——贪心算法之删数字(求最小值)

算法描述

在给定的n位数字,删除其中的k位数字( k < n),使得最后的n-k为数字为最小值(原次序不变)

算法思路

  1. 考虑到是要移出数字,我们使用链表设计此算法较为方便,链表可以直接移出某个位置的元素
  2. 使用贪心算法,每一步都要达到最优
  3. 从最高位开始,若下一位比上一位要小,则将上一位的数字移出,结束之后再次从最高位开始

这里需要注意,会有特例

当输入从小到大的的一个数的时候,上述算法将会无法运行,比如123456,删除1个数字变为最小,我们把6删去,这样才是最小的(即从末尾删除数字)

算法实现

    Scanner scanner = new Scanner(System.in);
    System.out.println("请输入整数:");
    String s = scanner.nextLine();
    System.out.println("删除数字的个数:");
    int n = scanner.nextInt();
    scanner.close();

    int a[] = new int[s.length()];

    for(int i=0;i<s.length();i++){
        char temp =s.charAt(i);
        a[i] = temp -'0';//不减去‘0’则会获得Ascii码
    }

    LinkedList<Integer> linkedList = new LinkedList<Integer>();
    for(int i=0;i<a.length;i++){
        linkedList.add(a[i]);
    }

    int flag =0;
    while(flag<n){
        for(int i=0;i<linkedList.size()-1;i++){
            if(linkedList.get(i)>linkedList.get(i+1)){
                linkedList.remove(i);//使用链表移出元素
                flag++;

                break;//结束本次循环,跳转到while循环中
            }
            //考虑到特殊情况,当遍历完全部数字都不满足条件,从末尾删除数字
            if(i==linkedList.size()-2){
                linkedList.removeLast();
                flag++;

            }
        }
    }

    System.out.print("截取的"+n+"个数字后的最小值为");
    for(int i=0;i<linkedList.size();i++){

        System.out.print(linkedList.get(i));
    }

    

结果

原文地址:https://www.cnblogs.com/kexing/p/9792752.html

时间: 2024-10-09 10:05:30

算法学习——贪心算法之删数字(求最小值)的相关文章

算法学习——贪心算法之删数字(求最大值)

算法描述 在给定的n位数字,删除其中的k位数字( k < n),使得最后的n-k为数字为最大值(原次序不变) 算法思路 考虑到是要移出数字,我们使用链表设计此算法较为方便,链表可以直接移出某个位置的元素 使用贪心算法,每一步都要达到最优 从最高位开始,若是下一位比上一位大,则比上一位的数字移出,结束之后再次从最高位开始 例如 16489657 删除4个数字 首先比较1和6 删除1 得到 6489657 之后,再次比较 6和4 往后推 可得到 689657 以此类推 删除4个数字之后 可得到 96

算法学习——贪心算法之可拆背包

算法描述 已知道n种物品和一个可容纳c重量的背包,第i种物品的重量为wi,价值为pi,装包的时候可以把物品拆开(即可只装每种物品的一部分),设计如何装包,使装包所得整体的价值最高? 算法思路 首先,我们要知道,n种物品以及他们对应的价值,都是由用户输入的 我们使用贪心算法,每一步取最大效益的物品放入背包之中(及单位价值为最高的物品 单位价值=pi/wi) 由以上思路,我们可以定义一个二维数组来接收用户输入的数值 w[i][0] 代表了第i种物品的重量(即wi) w[i][1] 代表了第i种物品的

算法学习——贪心算法之币种统计

算法描述 币种统计 单位给每一位员工发工资(精确到元),为了保证不临时换零钱,使得每个员工取款的张数最少,在取工资前统计所有员工所需要的各种票面的张数(约定票种为100,50,20,10,5,2,1元),并验证币种统计是否正确 算法思路 算法描述其实是省略了要求,用户肯定是要输入员工数以及各位员工的工资 定义:n位员工,G[n]对应了第n员工的工资 a数组存放100元到1元的面值,a[0]=100,a[1]=50... b数组对应每个面值的张数,b[0]对应100元的张数,b[1]对应50元的张

算法学习——分治算法

这是从网上查到的概念资料,先收来~ 一.基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并.这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)…… 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关.问题的规模越小,越容易直接求解,解题所需的计算时间也越少.例如,对于n个

五大算法思想—贪心算法

贪心法理解 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变.换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优. 一句话:不求最优,只求可行解. 判断贪心法 对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解? 我们可以根据贪心法的2个重要的性质去证明:贪心选择性质和最优子结构性质. 1.贪心选择性质 什么叫贪心选择?从字义上就是贪心也就是目光短线,贪图眼前利益,在

算法导论--贪心算法与动态规划(活动选择问题)

活动选择问题 有一个教室,而当天有多个活动,活动时间表如下:找出最大兼容活动集!活动已按结束时间升序排序. 动态规划 采用动态规划需要满足两个条件:1.最优子结构2.子问题重叠 令Sij表示在ai结束后和aj开始前活动的集合,假定Aij为活动集合Sij的最大兼容子集,其中包含活动ak.问题变成求Sik与Skj最大兼容活动子集Aik与Akjz.我们用c[i,j]表示Sij的最优解的大小. 则c[i,j] = c[i,k]+c[k,j]+1;最后我们需要遍历所有可能的k值,找出最大的一个划分作为c[

hdu 2680 最短路径(dijkstra算法+多源最短路径单源化求最小值)

Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7062    Accepted Submission(s): 2301 Problem Description One day , Kiki wants to visit one of her friends. As she is liable

2017.12.27 算法分析 贪心算法删除数字求最小值问题

1个n位正整数a,删去其中的k位,得到一个新的正整数b,设计一个贪心算法,对给定的a和k得到最小的b: 一.我的想法:先看例子:a=5476579228:去掉4位,则位数n=10,k=4,要求的最小数字b是n-k=6位的: 1.先找最高位的数,因为是6位数字,所以最高位不可能在后5位上取到(因为数字的相对顺序是不能改变的,假设如果取了后五位中倒数第5位的7,则所求的b就不可能是6位的了,最多也就是4位的79228)理解这点很重要!所以问题变成从第1位到第k+1(n-(n-k-1))取最小值,为什

算法导论----贪心算法,删除k个数,使剩下的数字最小

先贴问题: 1个n位正整数a,删去其中的k位,得到一个新的正整数b,设计一个贪心算法,对给定的a和k得到最小的b: 一.我的想法:先看例子:a=5476579228:去掉4位,则位数n=10,k=4,要求的最小数字b是n-k=6位的: 1.先找最高位的数,因为是6位数字,所以最高位不可能在后5位上取到(因为数字的相对顺序是不能改变的,假设如果取了后五位中倒数第5位的7,则所求的b就不可能是6位的了,最多也就是4位的79228)理解这点很重要!所以问题变成从第1位到第k+1(n-(n-k-1))取